
2025 Proceedings

A Conference about XML and Other Markup Technologies

Silver

Markup UK 2025 Proceedings

2

Bronze

Markup UK 2025 Proceedings

3

Markup UK
A Conference about XML and Other
Markup Technologies
https://markupuk.org/

Markup UK Conferences Limited
is a limited company registered in England
and Wales.
Company registration number: 11623628
Registered address: 24 Trimworth Road,
Folkestone, CT19 4EL, UK
VAT Registration Number: 316 5241 25

Organisation Committee
Geert Bormans
Ari Nordström
Andrew Sales
Rebecca Shoob

Programme Committee
Syd Bauman – Northeastern University

Digital Scholarship Group
Achim Berndzen – <xml-project />
Abel Braaksma – Abrasoft
Peter Flynn – University College Cork
Tony Graham – Antenna House
Michael Kay – Saxonica
Jirka Kosek – University of Economics,

Prague
Deborah A. Lapeyre – Mulberry

Technologies
David Maus – State and University Library

Hamburg
Adam Retter – Evolved Binary
B. Tommie Usdin – Mulberry Technologies
Norman Walsh – MarkLogic
Lauren Wood – XML.com

Thank You
Evolved Binary
le-tex Publishing Services
Saxonica
OxygenXML
Ilmari Koria
Wissam Asfahani
...and our long-suffering partners

Sister Conferences

Markup UK 2025 Proceedings
by Rebecca Bamford, Achim Berndzen,
Francis Cave, Charafeddine Cheraa, John
Cummins, Francis Denton, Tony Graham,
Gerrit Imsieke, Michael H Kay, Martin
Kraetke, Astrea Kumaradas, Deborah A
Lapeyre, David Maus, Ari Nordström,
Steven Pemberton, Liam Quin, Adam
Retter, Andrew Sales, Erik Siegel, Amber
Smiley, Sheila Thomson, Norman Tovery-
Walsh, B. Tommie Usdin and Christine
Windeln.

The organisers of Markup UK would like to
thank Antenna House for their expert and
unstinting help in preparing and formatting
the conference proceedings, and their
generosity in providing licences to do so.

Antenna House Formatter is based on the
W3C Recommendations for XSL-FO and
CSS and has long been recognized as
the most powerful and proven standards
based formatting software available. It is
used worldwide in demanding applications
where the need is to format HTML and
XML into PDF and print. Today, Antenna
House Formatter is used to produce
millions of pages daily of technical,
financial, user, and a wide variety of other
documentation for thousands of customers
in over 45 countries.

Markup UK 2025 Proceedings

4

https://markupuk.org/

Modular ixml 6
Steven Pemberton.

From iXML to XSpec 22
Sheila Thomson.

XForms Extended 38
Charafeddine Cheraa.

Processing JSON with Template Rules 48
Michael Kay.

Schema Test Suite 68
Rebecca Bamford. Francis Denton. Astrea Kumaradas.

Design and Performance of a Corpus Scanner 80
Liam Quin.

Surfing the web with XProc 90
Norm Tovey-Walsh.

PrintCSS Meets LaTeX 100
Martin Kraetke. Christine Windeln.

Adding new Cars to a Running Train 110
Deborah Aleyne Lapeyre. B. Tommie Usdin.

5

Modular ixml
Steven Pemberton, CWI, Amsterdam

Most current ixml grammars are small. However there are examples of large grammars,
and it is likely that in the future more large grammars will emerge as ixml usage
increases.

To make large grammars more manageable, and to enable reuse, it would be useful to
have a way to modularise them.

One of the requirements of modularisation for reuse in any notation is to have a method
of specifying the contractual interface, such that it is possible for the producers of the
modules to change their internal structure without breaking any existing usage of the
module.

This paper describes a proposal for an ixml preprocessor that permits an ixml grammar
to invoke other modules of ixml grammars, specifying their linkage. This involves the
renaming of rules with name clashes in the modules, using ixml renaming, resulting
in a single ixml grammar with no rule-name clashes, and so that the resultant XML
serialisations remain the same. The invoking grammar remains unchanged.

There is no change to the syntax or semantics of ixml proper.

1. Contents

◆ Introduction
◆ Requirements
◆ Naming and renaming
◆ The Structure of a Module
◆ Semantics
◆ Processing
◆ Example
◆ Example
◆ Example
◆ A Larger Example
◆ Conclusion
◆ References

2. Introduction

Invisible XML, ixml for short [ixml], is a notation and process that uses context-free
grammars to describe the format of textual documents, allowing documents to be parsed
into an abstract parse-tree, which can be processed in various ways, but principally
serialised into an XML document, thus making the implicit structure of the textual document
explicit in the XML.

6

While most current ixml grammars are small (the grammar for ixml itself for example
is around 70 lines), it can be envisaged that in the future large grammars will emerge
containing subparts that are authored by different people. As an example, there is an
ixml grammar for XPath 4 at around 350 lines [jwl] which could be used by grammars for
languages that use XPath 4.

In [vdb], van den Brand et al. note the advantage of context-free generalised parsing, which
is used by ixml, over other restricted forms:

"the class of context-free grammars is closed under union, in contrast with
all proper subclasses of context-free grammars. [...] The compositionality
of context-free grammars opens up the possibility of developing modular
syntax definition formalisms. Modularity in programming languages and
other formalisms is one of the key beneficial software engineering
concepts."

What this is saying, is that if you have, for instance, two LL1 grammars and merge them,
the result may not still be LL1, but if you merge two general context-free grammars, the
result will still be context-free, and this is one of the advantages of context-free generalised
parsing, that you can modularise them.

3. Requirements

The main problem with merging two independent context-free grammars is that grammars
have no inherent scoping, and grammar rules in different component grammars may
have the same name, thus causing a clash. Modularisation has then to be designed so
as to prevent these name clashes. While this is the central functional design need for
modularisation, a number of other requirements and desiderata were formulated for the
design:

◆ It should be designed as a preprocessor that takes modules and an invoking grammar,
and produces a single ixml grammar as output; in this way it will work with all existing
ixml processors without change.

◆ Consequently, there should be no change required to ixml proper: just use the existing
syntax and semantics.

◆Modules should be able to invoke other modules.
◆Modules should have a visible contract of use, on both the producer's as the user's side,

so that it is obvious what each module uses and shares, and that if there are different
implementations of a particular module they can be swapped in and out.

◆ The internals of a module should be protected, so that a module owner can change the
implementation of a module, as long as the interface contract is maintained.

◆ It should be possible to independently check modules for completeness and consistency,
so that modules can be checked before they are combined.

◆ Although modules may be transformed to prevent name clashes, no changes should be
made to the invoking grammar, so that error messages are in the user's terms, and not
using renamed terms.

◆ Despite rules being renamed, the resultant serialisation should not change.
◆Modularisation should be kept as simple and easy-to-use as possible while meeting the

requirements.

4. Naming and renaming

The modularisation proposed here uses a new feature of ixml: renaming, a feature agreed
by the working group, but not yet part of the official specification; it is specified in the
current working draft [wd] and already present in several implementations. It allows you to
specify for a rule a different name than the default to be used on serialisation.

Requirements

7

To illustrate: an ixml rule has a name. Up to now in ixml, this specifies a name both for the
allowable input syntax, as for the name used in the output serialisation for that rule. If two
input forms have different syntaxes, it is therefore necessary to give them different names,
even if the intention is to have the same output serialisation.

For instance, consider a grammar that accepts both 31/12/1999 and 31 December 1999
forms of dates:

 date: numeric; textual.
 -numeric: day, -"/", month, -"/", year.
 -textual: day, -" "+, tmonth, -" "+, year.
 day: d, d?.
 month: d, d?.
 year: d, d, d, d.
 tmonth: -"January", +"1";
 -"February", +"2";
 ...
 -"December", +"12".
 -d: ["0"-"9"].

What you will see is that the serialisation of these are nearly identical, except that while
31/12/1999 produces

 <date>
 <day>31</day>
 <month>12</month>
 <year>1999</year>
 </date>

31 December 1999 produces

 <date>
 <day>31</day>
 <tmonth>12</tmonth>
 <year>1999</year>
 </date>

where the difference is because it is produced from a different input syntax. Using
renaming, you can specify that both have the same serialised name:

 tmonth > month:
 -"January", +"1";
 -"February", +"2";
 ...
 -"December", +"12".

Naming and renaming

8

This says that while tmonth is the name used in the grammar, and represents the textual
form of a month in the input, it should be serialised as month, thus in this case making the
two date serialisations identical.

Incidentally, since the allowable ixml names are not exactly the same set as the allowable
XML names, you can also specify the renaming as a string. For instance since ixml names
may not end with a dot, but XML names may, you can write:

 abc > "abc.": ...

The syntax of the start of a rule like this is called a naming, and can consist either of a
name, as currently in ixml, or a renaming, which consists of a name, a greater than, and
an alias, which can either be a name or a string.

Also in passing, it is worth noting that this has consequences for round-tripping, as
presented in [rt], since this introduces a roundtripping ambiguity. Because an output form
such as

 <date>
 <day>31</day>
 <month>12</month>
 <year>1999</year>
 </date>

can have been produced by two different input syntaxes, the roundtripping process has to
choose one of them. Where necessary this can be overcome with a technique such as:

 tmonth > month:
 style,
 (-"January", +"1";
 -"February", +"2";
 ...
 -"December", +"12").
 @style: +"text".

which would produce for the 31 December 1999 style of input

 <date>
 <day>31</day>
 <month style='text'>12</month>
 <year>1999</year>
 </date>

which can be uniquely round-tripped.

With this background explained, we can now proceed to the design of modularisation.

Naming and renaming

9

5. The Structure of a Module

A module consists of an otherwise normal ixml grammar, preceded by specifications of
rules used from other modules and what is shared for use from this module.

A specification of what to use from another module lists the rules needed from each module
it uses. Such a specification should be recognisable as different from an ixml rule.

The character to signal such a specification has been chosen as "+", though any character
that doesn't start the first ixml rule in a grammar could have been used in the design; ixml
rules can start with namestart characters, "-", "^" (and "@" but it is not possible to start the
first rule of a grammar with that character):

 +uses css from css.ixml

and

 +uses iri, url, uri, urn from uri.ixml

This specifies which module to use, and which rules from that module are intended to be
used.

It is possible to combine them

 +uses css from css.ixml; iri, url, uri, urn from uri.ixml

The specification of what is allowable to be used from a module is similar:

 +shares iri, url, uri, urn

There are two main choices for a grammar for these. The first literally recognises the
structure as it is specified above:

 module: s, (uses; shares)*, ixml.
 uses: -"+uses", rs, from++(-";", s).
 shares: -"+shares", rs, entries.
 from: entries, rs, -"from", rs, location, s.
 -entries: share++(-",", s).
 share: @name, s.
 @source: iri.

where s is the regular ixml rule for optional whitespace, rs for required whitespace, name
the rule for a rule name, ixml the rule for an ixml grammar, and iri, not defined here,
representing an internationalised URI [iri], allowing the use of grammars from external
sources, such as:

The Structure of a Module

10

 +uses iri from https://example.com/ixml/modules/iri.ixml

For a specification like

 +uses css from css.ixml; iri, url, uri, urn from uri.ixml

this produces a resulting structure like

 <uses>
 <from source='css.ixml'>
 <share name='css'/>
 </from>
 <from source='iri.ixml'>
 <share name='iri'/>
 <share name='url'/>
 <share name='uri'/>
 <share name='urn'/>
 </from>
 </uses>

Alternatively, the grammar could look like:

 module: s, (multiuse; shares)*, ixml.
 -multiuse: -"+uses", rs, uses++(-";", s).
 shares: -"+shares", rs, entries.
 uses: entries, rs, -"from", rs, from.
 -entries: share++(-",", s).
 share: @name, s.
 @from: iri, s.

where the resulting structure then looks like:

 <uses from='css.ixml'>
 <share name='css'/>
 </uses>
 <uses from='uri.ixml'>
 <share name='iri'/>
 <share name='url'/>
 <share name='uri'/>
 <share name='urn'/>
 </uses>

The advantage of the latter version is that processing is slightly easier, since shallower, with
a slight disadvantage with respect to round-tripping, since the two forms

The Structure of a Module

11

 +uses css from css.ixml; iri, url, uri, urn from uri.ixml

and

 +uses css from css.ixml
 +uses iri, url, uri, urn from uri.ixml

are no longer distinguishable on roundtripping, since they produce the same serialisation.

6. Semantics

There are some semantic requirements:

◆ all modules used must exist;
◆ a module must share the rules mentioned to be used from that module;
◆ all names in uses and shares specifications in a module must be unique;
◆ a module must not define a rule for any name that it uses;
◆ a module must define rules for all names it shares.

Modules are allowed to invoke each other: consider a programming language where
declarations can include procedures, and procedures can include declarations, then the
module for procedures would have:

 +uses declaration from declaration.ixml
 +shares procedure

and the module for declarations would have:

 +uses procedure from procedure.ixml
 +shares declaration

This illustrates that a uses specification is different from, for instance, a #include
statement in C preprocessing, since uses only ensures that the module will be present
in the final grammar.

Note that a module can only share rules it defines; it is not permitted to share a rule from a
different module like this:

 +uses x, y from z.ixml
 +shares x

So, having defined what a module looks like, we can now use it to define itself:

 +uses ixml, name, s, rs from ixml.ixml; iri from iri.ixml

Semantics

12

 +shares module

 module: s, (multiuse; shares)*, ixml.
 -multiuse: -"+uses", rs, uses++(-";", s).
 shares: -"+shares", rs, entries.
 uses: entries, rs, -"from", rs, from.
 -entries: share++(-",", s).
 share: @name, s.
 @from: iri, s.

7. Processing

The set of the invoking module and all invoked modules is collected, including modules
in turn invoked by those modules. These modules are going to be concatenated, but any
name clashes are resolved first.

If any two invoked modules contain the definition of a rule of the same name, one of the
rules is renamed:

◆ If either of the pair is a rule that is not used in any other of the set of modules (whether
shared or not), then that rule is renamed.

◆ If both are used in other modules, then if one of the pair is a rule defined by the original
invoking module, the other is renamed; otherwise either may be renamed.

A rule is renamed by generating a new unique name, different from all other rule names in
the set of modules:

◆ If the rule is defined with a naming (i.e. it has a name and an alias), the rule is redefined
with a naming consisting of the new unique name and the existing alias.

◆ If the rule is defined using just a name (i.e. without an alias), the rule is redefined with a
naming formed of the new unique name as name, and the old name as alias.

All applications of the old name in the module grammar, and any of the other modules that
use that rule are replaced with the new name.

Once all naming conflicts are resolved, all invoked modules are appended to the invoking
module, with the uses and shares specifications removed.

What these rules ensure is that:

◆ there are no name clashes in the resulting grammar;
◆ the original invoking grammar is not changed in any way, so that error messages about

that grammar are given in terms the author expects;
◆ changes within a module are preferred over changes that extend to other modules;
◆ any resulting serialisation remains the same.

8. Example

As a simple example, imagine a language of identity statements of the style

 total=price+tax+shipping
 tax=price×10÷100
 shipping=5

Processing

13

expressed by this grammar that uses the definition of expr from another module:

 +uses expr from expr.ixml
 data: identity+.
 identity: id, -"=", expr, -#a.
 id: [L]+.

The only problem is that the expr module has a clashing rule for id:

 +shares expr
 expr: id++op.
 id: [L; Nd]+.
 op: ["+-×÷"].

Since the invoking grammar never gets changed, the rule in the module gets renamed,
resulting in the following complete grammar:

 data: identity+.
 identity: id, -"=", expr, -#a.
 id: [L]+.

 expr: id_++op.
 id_>id: [L; Nd]+.
 op: ["+-×÷"].

If the module's rule for id had instead been a renaming, it could have looked like this:

 id>ident: [L; Nd]+.

and the renaming would have ended up as:

 id_>ident: [L; Nd]+.

9. Example

Making the example slightly more complex, with rules like

 result[1]=a1+b1+c1
 result[2]=a2+b2+c2

using this grammar:

Example

14

 +uses expr from expr.ixml; identity from id.ixml
 rules: rule+.
 rule: identity, -"=", expr, -#a.

Module expr.ixml

 +shares expr
 expr: operand++op.
 operand: id; number.
 id: [L], [L; Nd]*.
 op: ["+-×÷"].
 number: ["0"-"9"]+.

Module identity.ixml has a clash with both id and number from expr.ixml:

 +shares identity
 identity: id; id, -"[", number, -"]".
 id: [L]+.
 number: digits, (".", digits)?.
 -digits: [Nd]+.

The invoking grammar never changes:

 rules: rule+.
 rule: identity, -"=", expr.

In module expr.ixml nothing needs changing

 expr: operand++op.
 operand: id; number.
 id: [L], [L; Nd]*.
 op: ["+-×÷"].
 number: ["0"-"9"]+.

In identity.ixml both id and number are renamed:

 identity: id_; id_, -"[", number_, -"]".
 id_>id: -"@", [L]+.
 number_>number: digits, ".", digits.
 -digits: [Nd]+.

The rules allow either or both to be renamed in expr.ixml instead.

Example

15

10. Example

The invoking grammar:

 +uses id from ident.ixml; expr from expr.ixml
 rules: rule+.
 rule: id, -"=", expr.

Module ident.ixml

 +shares id
 id: [L]+.

Module expr.ixml

 +uses id, number from id.ixml
 +shares expr
 expr: operand++op.
 operand: id; number.
 op: ["+-×÷"].

Module id.ixml

 +shares id, number
 id: [L], [L; Nd]*.
 number: [Nd]+.

Here there are two rules called id both shared and used by two different modules.

The invoking grammar is never changed:

 rules: rule+.
 rule: id, -"=", expr.

and since the id rule is used from module ident.ixml, the rule may not be renamed
there:

 id: [L]+.

This means that the id rule in module id.ixml has to be renamed:

 id_>id: [L], [L; Nd]*.

Example

16

 number: [Nd]+.

and in module expr.ixml that uses it

 expr: operand++op.
 operand: id_; number.
 op: ["+-×÷"].

11. A Larger Example

Imagine you were defining a textual format for XForms [xf]:

 Example XForm
 style xform.css

 model M
 instance data data.xml
 submission save put:data.xml replace:none

 input name "What is your name?"
 submit "OK"

This is going to need definitions for CSS, URIs, XPath, and a lot more. Furthermore, it
would be worth modularising it into several parts that are effectively independent, reflecting
the model-view-controller aspect of XForms: the model, the content, and actions. This
might result in a grammar like this (this is not a complete example).

The top-level:

 +uses form from form.ixml
 +uses content from content.ixml

 xform>html: h, form, content.
 @h>xmlns: +"http://www.w3.org/1999/xhtml".

Module form.ixml:

 +shares form
 +uses css from css.ixml;
 model from model.ixml;
 iri from iri.ixml;
 s from xforms-basics.ixml

 form>head: title, styling?, model*.
 title: ~[" "; #a], ~[#a]+, -#a.
 -styling: -"style", s, (style; stylelink).
 stylelink>link: csstype, cssrel, href.

A Larger Example

17

 style: csstype, css.
 @csstype>type: +"text/css".
 @cssrel>rel: +"stylesheet".
 @href: -iri, s.

Module model.ixml:

 +shares model
 +uses s, ref, xf from xforms-basics.ixml;
 id, name from xml.ixml;
 Action from action.ixml;
 iri from iri.ixml

 model: -"model", s, id, s, xf, -#a,
 s, (instance; bind; submission; Action)+.

 instance: -"instance", s, id, s, resource, s.
 @resource: -iri.

 bind: "bind", s, (id, s)?, ref, s, property*.
 property: type {; readonly; relevant; required; etc}.
 type: "type:", name, s.

 submission: -"submission", s, id, s,
 (method, -":", resource, s)?, replace?.
 @method: "get"; "put".
 @replace: -"replace:", name, s.
 {etc}

Module content.ixml:

 +shares content
 +uses IDREF from xml.ixml;
 xf, ref, string, s from xforms-basics.ixml

 content>body: group.

 group: xf, control*.
 -control: input; submit {more}.

 input: -"input", s, ref, label.
 label: string.

 submit: -"submit", s, subid?, label?.
 @subid>submission: -"submission:", IDREF, s.

and so on. Giving output like:

 <html xmlns='http://www.w3.org/1999/xhtml'>

A Larger Example

18

 <head>
 <title>Example XForm</title>
 <link type='text/css' rel='stylesheet' ↩
href='xform.css'/>
 <model id='M' xmlns='http://www.w3.org/2002/xforms'>
 <instance id='data' resource='data.xml'/>
 <submission id='save' method='put' resource='data.xml' ↩
replace='none'/>
 </model>
 </head>
 <body>
 <group xmlns='http://www.w3.org/2002/xforms'>
 <input ref='name'>
 <label>What is your name?</label>
 </input>
 <submit>
 <label>OK</label>
 </submit>
 </group>
 </body>
 </html>

12. Other Possible Approaches

This proposal introduces a modularisation that allows modules to be combined while
only requiring minimal changes to avoid name-clashes. Other approaches would include
introducing scoping into ixml, (but this would just move responsibility for renaming to the
implementations), or renaming all rules, for instance by in some way including the module
'name' (=source) in each rule name. This would involve more changes during processing,
but might result in less analysis of rule names.

13. Conclusion

What this proposal has shown is that you can introduce modularisation in ixml by imitating
scoping in a simple and direct manner, allowing a pre-processor to produce a complete
ixml grammar that produces an identical serialisation of the parsed input, without having to
change the syntax or semantics of ixml proper.

References

[iri] M. Duerst and M. Suignard. RFC 3987: Internationalized Resource Identifiers (IRIs).
IETF. 2005. https://datatracker.ietf.org/doc/html/rfc3987 .

[ixml] Steven Pemberton. Invisible XML Specification. Invisible XML Organisation. 2022.
https://invisiblexml.org/1.0/ .

[jwl] John Lumley. Invisible XML workbench. Github. 2024. https://johnlumley.github.io/
jwiXML.xhtml .

[rt] Steven Pemberton. Round-tripping Invisible XML. Proc. XML Prague 2024. 2024.
153-164. 978-80-907787-2-6. https://archive.xmlprague.cz/2024/files/xmlprague-2024-
proceedings.pdf#page=163 .

Other Possible Approaches

19

https://datatracker.ietf.org/doc/html/rfc3987
https://invisiblexml.org/1.0/
https://johnlumley.github.io/jwiXML.xhtml
https://johnlumley.github.io/jwiXML.xhtml
https://archive.xmlprague.cz/2024/files/xmlprague-2024-proceedings.pdf#page=163
https://archive.xmlprague.cz/2024/files/xmlprague-2024-proceedings.pdf#page=163

[vdb] M.G.J. van den Brand et al.. Disambiguation Filters for Scannerless
Generalized LR Parsers. Compiler Construction. 2002. 143–158. https://doi.org/
10.1007/3-540-45937-5_12 . https://cwi.nl/~jurgenv/papers/CC-2002.pdf .

[wd] Steven Pemberton. Invisible XML Specification - Community Group Editorial Draft.
Invisible XML Community Group. 2025. https://invisiblexml.org/current/ .

[xf] Erik Bruchez et al.. XForms 2.0. W3C. 2025. https://www.w3.org/community/
xformsusers/wiki/XForms_2.0 .

Conclusion

20

https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1007/3-540-45937-5_12
https://cwi.nl/~jurgenv/papers/CC-2002.pdf
https://invisiblexml.org/current/
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0

From iXML to XSpec
Sheila Thomson

In the autumn of 2024, I attended the XML Summer School and persuaded (it wasn’t
difficult) Stephen Pemberton to tack a session on iXML onto the end of his course on
XForms. On the bus home, I made a start on my first iXML grammar. Within a week I
had encountered a character encoding mystery and whitespace challenges, lost a day
naming things and was working on repurposing XSpec for testing iXML grammars.

This paper: outlines my learning journey, as a case study; highlights existing methods
for tesing iXML; and summarises how I adapted XSpec for testing iXML.

1. Introduction

In the autumn of 2024, I attended the XML Summer School and persuaded (it wasn’t
difficult) Stephen Pemberton to tack a session on iXML onto the end of his course on
XForms. On the bus home, I made a start on my first iXML grammar. Within a week I had
encountered a character encoding mystery and whitespace challenges, lost a day naming
things and was working on repurposing XSpec for testing iXML grammars.

This paper:

◆ outlines my learning journey as a case study

◆ highlights existing methods for testing iXML

◆ summarises how I adapted XSpec for testing iXML

1.1. What is iXML?

The specification for Invisible XML (iXML) describes it as “a method for treating non-XML
documents as if they were XML”[IXML]. On Invisible XML [http://invisiblexml.org/], where
the spec is hosted, it expands that definition slightly: “Invisible XML is a language for
describing the implicit structure of data, and a set of technologies for making that structure
explicit as XML markup.”[IMCG]

In practice, this means that if a document or dataset has a regular enough structure that
you can write down the rules to parse it (an iXML grammar), then you should be able to use
an iXML processor (such as CoffeePot) to apply the grammar to the document or dataset in
order to convert it to XML (see Figure 1 [22]).

Figure 1. High-level overview of an iXML conversion

22

http://invisiblexml.org/
http://invisiblexml.org/

1.2. Why iXML?

People have been talking about iXML for a few years now and it’s become a re-occurring
topic at markup conferences (see Figure 2 [23]1). In my case, I was looking for a new
personal project and curious to find out whether iXML would live up to the hype.

Figure 2. Frequency of Presentations on iXML

Also, I suspect that I may be able to use iXML to simplify an existing pipeline that converts
family tree data from GEDCOM to XML. GEDCOM itself is a standard, with a grammar, and
although it can be used to serialise data as XML or text, it seems that the text option is
most common; it’s certainly the only option for exporting from Ancestry.com [ancestry.com],
which is where I maintain my family trees.

For an in-depth consideration of why you, or a client, might want to use iXML, see past
papers on the topic, particularly Steven Pemberton's original proposal for Invisible XML,
that he presented at Balisage in 2013[PEM2013].

2. Learning iXML

Steven Pemberton often runs tutorials for learning iXML at markup conferences and,
although it wasn’t on the schedule, he very kindly tacked one onto the end of a
course I was attending on XForms, during the 2024 XML Summer School [https://
xmlsummerschool.org/], in Oxford.

If you’re unable to attend one of Steven’s tutorials, Norm Tovey-Walsh has created an
online tutorial Writing Invisible XML grammars [https://www.xml.com/articles/2022/03/28/
writing-invisible-xml-grammars/]. The Invisible XML Specification is published at https://
invisiblexml.org/1.0/ and I recommend paying particular attention to the Complete Grammar
section so you’re aware of the pre-defined rules; it’s also a great example of what an
iXML grammar looks like and immediately after it is an example of the XML that would be
generated if you applied the iXML grammar to itself. The spec is developed and maintained
by the W3C Invisible Markup Community Group [https://www.w3.org/community/ixml/], who
have a email discussion group [https://lists.w3.org/Archives/Public/public-ixml/] that anyone
can message and a public archive that you can search (in case your question has been

1At Balisage, Declarative Amsterdam, Markup UK, XML London and XML Prague. For the full list, see Appendix B [34]

Why iXML?

23

https://xmlsummerschool.org/
https://xmlsummerschool.org/
https://xmlsummerschool.org/
https://www.xml.com/articles/2022/03/28/writing-invisible-xml-grammars/
https://www.xml.com/articles/2022/03/28/writing-invisible-xml-grammars/
https://www.xml.com/articles/2022/03/28/writing-invisible-xml-grammars/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://www.w3.org/community/ixml/
https://www.w3.org/community/ixml/
https://lists.w3.org/Archives/Public/public-ixml/
https://lists.w3.org/Archives/Public/public-ixml/

raised and discussed before). There is a list of grammars on https://invisiblexml.org/ but in
general I’ve struggled to find publicly available iXML grammars.

For my own first attempt at writing an iXML grammar, I chose the DTD document
type (DOCTYPE) declaration “string” as the text I wanted to parse. Although DTDs
have technically been superseded by more modern schema languages, they’re still fairly
commonplace. The DOCTYPE declaration can be used to associate an XML document
with an external Document Type Definition (DTD). I chose external because it’s much
simpler than internal and the use-cases I had in mind all related to external definitions.

When working with XML documents, sometimes it’s useful or necessary to know what the
exact content model is. In human mode, I can open the document and read the schemas
association information; if that’s not there, we’re into a whole other problem that’s out-of-
scope for this particular use case. Programmatically, it’s not so easy, as that information is
discarded when a DOM object is created.

Another reason for choosing the DOCTYPE declaration was that the rules for writing one
are explicitly defined in the specification for XML[XML1-0] so I wouldn’t have the additional
overhead of trying to infer them from sample documents.

Once I started drafting my iXML grammar, I soon wanted to test it out and “eyeball” what
was coming out. We hadn’t been running iXML transformations locally on our laptops
during the tutorial (because it was unplanned) so I wasn’t already set up for it. Happily,
Google led me to CoffeePot, an Invisible XML processor, developed and maintained by
Norm Tovey-Walsh[CPOT]. It’s distributed as a jar file, can easily be run from a command-
line and has a useful manual. For a list of alternative implementations, see invisblexml.org.

Next, I needed a sample input document. This is when I discovered that it wasn’t possible
to use iXML itself to find and isolate the DOCTYPE declaration within the XML document;
unlike a regular expression, an iXML grammar must match the entirety of the input
document. At this point, as I was simply looking for sample input to experiment with,
I should have just manually copy and pasted the DOCTYPE declaration string into a
file of it’s own. However, I had it stuck in my head that my real-world use-case was to
programmatically parse the string and convert it to XML. So I created an ANT macro
to load the XML document as text and use a regular expression to find and extract the
DOCTYPE declaration. I could have made my regular expression more complex in order
to identify the component parts of the DOCTYPE declaration but that would have defeated
the point of the learning exercise. Also, one of the advantages of an iXML grammar over a
regular expression is readability. Understanding even a slightly complex regular expression
written by someone else - or by myself a while ago - can be challenging whereas an iXML
grammar is commonly expressed as named components so it’s easier to identify the logical
“building blocks” and how they relate to each other.

Figure 3. Single-line text file containing a DOCTYPE declaration for XHTML

Figure 3 [#doctype-declaration-example] shows an example of a DOCTYPE declaration
string after it's been extracted from an XHTML document and saved separately in a text file.

Now I was ready to test.

3. Testing an iXML grammar

For general reasons to test, see Sandro Cirulli’s 2017 paper introducing XSpec
v0.5.0[CIR2017] and Stretching XPath: Three Testing Tales: Beyond Primary Use Cases
of Certain XML Functions and Standards by Amanda Galtman[GAL2024].

Testing an iXML grammar

24

https://invisiblexml.org/

3.1. Eyeballing the output

An informal term for literally just looking at the output and manually scanning for errors.
Unless you’re a hardcore practitioner of Test Driven Development[TDD], it’s likely that
you’ve done this and it’s certainly what I was doing when I first started experimenting with
iXML. It’s low risk while you’re learning something new and the inputs and outputs are small
and simple - and the software isn’t in production - but as complexity increases, manual
checks usually become more time-consuming and risky and the odds are that you will start
missing mistakes. Eventually you’re going to need to put something more robust in place.

3.2. Schema validation

If there’s a schema for your target XML then you may be able to validate your output
against it. In some cases, even though a schema is available this type of testing may not
be practical, for example, if your iXML creates content to be inserted into a larger document
and the schema is designed to only validate in the context of that larger document.

Schema validation can alert you to errors such as a misspelt element or attribute name,
a missing wrapper element or elements in the wrong order. This is especially pertinent
to testing an iXML grammar as this is where many of (sometimes all) the element and
attribute names are written.

However, most schemas check the markup but not the content that is being marked up so,
for example, if a word or URL is unintentionally changed during the conversion, a schema is
unlikely to detect it.

A schema also won’t catch content that is unintentionally lost during the conversion unless
the lost content is mandatory.

3.3. Diff

Diffing is similar to eyeballing the content but the comparison is executed programmatically,
so if you want to use it as a testing method, you need to provide the diff tool with a copy of
the output expected (a control document) as well as the content to check.

This technique is especially useful if you don’t have a schema to validate against and also
for spotting lost or unintentionally changed content. However, if the control document is
large, it can be very time-consuming to create and maintain.

3.4. XSpec

XSpec is a popular testing framework, originally created in 2008[CIR2017] for testing XSLT
but it has since been extended to also support XQuery and Schematron.[WHATXSP] My
experiment to use XSpec for testing iXML extended the process for testing XSLT so the
scope of this section is limited to the XSpec process for XSLT. However, Amanda Galtman
has published an article on how to test iXML using XQuery in BaseX with Markup Blitz.
[GALMED]

3.4.1. Using XSpec to test XSLT

Figure 4 [#xspec-xml-for-xslt], shows the XML for a very simple XSpec file
(jumping.xspec) to test an XSLT file named jumping.xsl. The input data is provided
inline, wrapped within an x:context element (line 10). This example contains three tests
(lines 12-14).

Figure 4. Simple XSpec test file

Eyeballing the output

25

XSpec takes the test file as an input and uses /x:description/@stylesheet to locate
the XSLT file (see Figure 5 [26]). When it’s finished evaluating the tests, it outputs two
result documents: one containing a detailed breakdown of the results and showing any
errors found (HTML) and the other a simple ANT properties file containing the overall result
(pass/fail).

Figure 5. Inputs and outputs when testing XSLT with XSpec (high-level)

For the purposes of this example, the XSLT hasn’t been updated to change “lazy dog” to
“dozy hare” so the second test (line 13) fails. See Figure 6 [xspec-xslt-test-report] for an
screenshot of the HTML results file. Notice that for the failed test, the report includes a
diff visualisation of the actual result returned by the XSLT (on the left) and the “Expected
Result” that was specified on line 13 of the XSpec test file.

Figure 6. XSpec results (HTML)

One of the key advantages of XSpec over other diff tools is the option to use XPath to
target and test sub-sections of content. For more in-depth tutorials, see the Getting Started
section on the official XSpec wiki.[GETST]

3.4.2. Using XSpec to test iXML

One of the maintainers of XSpec, Amanda Galtman, has identified a relatively simple
way that this can be done using the invisible-xml function in XPath 4.0[GALMED]
[XPATH4]. Unfortunately, the specification for XPath 4.0 is still in development and not
yet widely supported. However, Amanda’s solution can already be used if you write your

XSpec

26

XSpec tests as XQuery and run them in BaseX with the Markup Blitz library. Once the
invisible-xml function is supported in an XSLT processor, it should also be possible to
use it in XSpec tests written for XSLT.

When I started thinking about how XSpec’s XSLT process might be adapted for testing
iXML, the main differences that I identified were:

1. the context is text, not XML

2. the code being tested is an iXML grammar, not an XSLT stylesheet

I wanted to make as few changes as possible to the way that the XSpec test file would be
written[WRITEXSPEC] and realised that this would be possible if I could apply the iXML
transformation to the context before the expectations were evaluated. So that the XSpec
would be able to easily differentiate a test file written for iXML from one written for XSLT,
XQuery or Schematron, I added a new attribute to the root element of the test file, named
grammar, the value of which is expected to be a path to a file containing the iXML grammar
being tested.

Figure 7. An example of an XSpec test file for iXML

In Figure 7 [27], the iXML grammar is specified on line 3 and the text to be converted
to XML is stored in a separate file and specified using the href attribute on x:context
(line 7). This is a standard option in XSpec that’s very useful if you’re re-using the same
text in multiple scenarios. The contents of xhtml_public_path.txt can be seen in
Figure 3 [24]. The expected result is specified, as per usual, via the x:expect element
(lines 9-16). Similar though it is, this test file is not a valid XSpec file so I also changed
the namespace URI (line 2). During the iXML pre-processing step, when a valid XSpec file
is created, the namespace URI is changed back to http://www.jenitennison.com/
xslt/xspec.

Under the hood of the XSpec testing process, there are four main steps: compile, evaluate,
report and summarise.

Figure 8. Steps in the XSpec process, with inputs and outputs

XSpec

27

I decided to add the iXML transformation as an extra step, immediately before Compile;
it’s not unprecedented, as XSpec already includes a pre-processing step when testing
Schematron. I implemented this step using XProc, mostly so that I could take advantage of
its support for iXML (p:ixml2)[XPROCIXML] but also, if I’m honest, in part because it was
a personal project and I enjoy working with XProc. This custom XProc step:

1. changes the namespace URI from http://xylarium.org/ns/xspec/utils/
ixspec to http://www.jenitennison.com/xslt/xspec

2. replaces /x:description/@grammar with /x:description/@stylesheet which
references an XSLT identity transform stylesheet

3. uses p:viewport to iterate over all the x:context elements and, for each:

a. uses p:ixml to transform the input (x:context/@href) into XML using the
grammar (/x:description/@grammar) and stores the result as a temporary file

b. changes x:context/@href to reference the temporary file containing the result of
the iXML transformation

4. uses resolve-uri() and p:xslt to change any x:expect/@href URIs that are
relative to absolute.

Figure 9 [28], shows what the output of this step would be if it were applied to the example
XSpec file shown in Figure 7 [27].

Figure 9. XSpec test file for iXML after pre-processing

If the iXML grammar is correct then the contents of 1.ixml-output.xml (the results of
the iXML transformation) will now be the same as the contents of the x:expect element
in Figure 7 [#]. This (temporary) XSpec file can now progress through the normal XSpec
steps: compile, evaluate, report and summarise. If the result of the iXML transformation
isn’t as expected then the differences will be displayed side-by-side in XSpec’s HTML
report.

3.5. What testing revealed

Initially, the errors were caused by a fairly equal mix of syntax errors in my grammar, eg.
forgetting to add a full-stop at the end of each rule, and incomplete grammar rules. On
the syntax errors front, I resolved this with a more throrough reading of the iXML spec

2The name of this function has since changed to p:invisible-xml[XPROCIXML]

What testing revealed

28

and comparing other iXML grammars with each other, as well as my own. The incomplete
grammar rules were inevitable as I was testing it before it was complete.

Whitespace was a problem. Michael Sperberg-McQueen wrote about this in 2023, in his
paper on Keyboarding Frege's concept writing[CMS2023]:

The handling of whitespace is one of the trickiest and least expected
problems confronted by the writer of invisible-XML grammars. Even those
with long experience using and writing context-free grammars may be
tripped up by it, partly because most practical tools for parser generation
assume an upstream lexical analyser or tokenizer which can handle
whitespace rules, and most published context-free grammars accordingly
omit all mention of whitespace. Because ixml does not assume any
upstream lexical analyser, whitespace must be handled by the grammar
writer.

If care is not taken, then either whitespace will not be allowed in places
where it should be allowed, or it will be allowed by multiple rules,
introducing ambiguity into the grammar. (In this case, the ambiguity is
usually harmless, since the position of whitespace seldom affects the
intended meaning of the input. But there is no way for the parser to know
when ambiguity is harmless, so it will warn the user.) On the other hand, if
care is taken, then whitespace handling can begin to consume all too much
of the grammar writer’s thoughts.

—Michael Sperberg-McQueen

That was exactly my experience: finding that whitespace wasn't allowed where it should
and then was allowed where it shouldn't. Similarly, before I started writing the grammar, I
hadn't really thought about the source including content I might want to drop, for example,
delimiters and other punctuation. However, with each new scenario I discovered, I was able
to create a new test and if the fix for this new problem unintentionally broke a scenario that
was previously working, I knew about it straight away.

Another white-space challenge was understanding what Zs is shorthand for. Although it is
referenced in the iXML grammar, it's not also defined there, unlike tab, lf and cr which
are all defined as well as referenced (see Figure 10 [29].

Figure 10. iXML definition of whitespace, including Zs

However, the iXML specification mentions Unicode character classes and, sure enough,
Zs is defined in Table 4.4 of the Character Properties chapter of the core specification of
the Unicode Standard[UNIGEN] (see figure 11). This isn’t the only Unicode character class
code that’s used in the iXML spec so, unless you’re familiar with them all, you may also find
this table useful.

Figure 11. Excerpt from the Unicode Standard showing the definition of Zs

What testing revealed

29

As I got towards the end of writing my grammar and I started to try to make sure that it
exactly implemented the rules for a DOCTYPE declaration, as defined for XML 1.0 (fifth
edition)[XML1-0] and 1.1[XML1-1] (the rules are the same in both specs).

Figure 12. Excerpts from the XML 1.0 Specification showing the rules for a DOCTYPE declaration

I copied the character ranges from the XML spec and pasted them into my iXML grammar
but when I tested the changes, an error was thrown, complaining that character #EFFFF
wasn’t allowed. A quick search revealed that #EFFFF is one of 66 Unicode code points
confusingly labelled Noncharacter[WIKINON][UNINON][UNIGEN]. This prompted me to
post a question in the xml.com space on Slack.com [https://slack.com]. The conversation
this triggered is now lost because messages in that Space are hidden after 90 days (I
should have, instead, emailed the question to the iXML mailing list where the discussion
would have been preserved) however the kind people of XML Slack helped me understand
that:

◆ the problematic character was in the rule for a Name Start Character

◆ the iXML definition for a Name Start Character isn't the same as the XML definition for
Name Start Character

This isn't the only difference between iXML and XML when it comes to names
and the archive for the iXML mailing list includes quite a long discussion
about this[CHARDISCUSS]. Norm Tovey-Walsh has also investigated the differences
and documented his detailed findings and some history in Understanding (i)XML
names[IXMLNAMES]. My temporary workaround was to fallback to using the more
restrictive iXML definition: -xml-name-start-character: ["_"; L].

Another whitespace-related challenge manifested when I configured CoffeePot to pretty
print the XML output and XSpec started failing my tests because of whitespace differences.
I had already updated the expected result so that it was also pretty printed and the actual
result looked identical in the side-by-side diff but on closer examination I discovered that
CoffeePot was indenting with spaces, whereas I had used tabs to indent the expected
result. The samples are much easier to work with if pretty printed, so I didn’t want to
remove the indentation but as I believe that tabs are superior to spaces (#religious-war),
I wasn’t about to change the settings in my text editor to replace tabs with spaces and
the odds were low that I would remember to use spaces instead of tabs in just those files.
Instead, I created an XSLT identity transform that strips whitespace and added it to my
XSpec file as a helper.

The final noteworthy test failure was also XSpec related. Both x:context and x:expect
were set to source their content from external files (@href), with no select attribute. And
it looked as though the result matched the expected, but the tests were failing because

What testing revealed

30

https://slack.com
https://slack.com

the result was an element() but expected was a document-node(). My workaround
for this was to set each of the expects to select the root element(), instead of the
document-node().

4. Automation

I used ANT to connect together the XProc pre-processing step and XSpec's standard
steps (compile, evaluate, report, summarise), which are already written in ANT. XSpec
actually includes an XProc 1.0 pipeline for running tests (as an alternative to ANT) but my
pre-processing step was written using XProc 3.1 - and XProc 1.0 steps are incompatible
with XProc 3.0+ steps. It wasn’t possible to downgrade the pre-processing step to version
1.0 because it doesn’t support the p:ixml step, which the pre-processing step depends
on.

I used XProc instead of ANT for the pre-processing step because it's usually easier to make
changes to an XML file using XProc or XSLT. MorganaXProc-III SE supports the XProc
3.1 p:ixml step, for carrying out the iXML transformation, whereas the invisible-
xml function in XSLT 4.0 isn't yet supported by an XSLT processor. However, the pre-
processing step does still include two XSLT transformations. It’s so easy to use XSLT within
XProc that when writing XProc, if I already know how to achieve something using XSLT,
I tend to mix the two together rather than checking to see if a more efficient approach is
possible simply using out-of-the-box XProc. Although, once something is working, given
time and opportunity, I do often review and reflect on my code and explore whether there
are other potentially more suitable options available and refactor to use them instead, eg.
p:add-attribute and p:namespace-rename.

5. Conclusion

In my opinion, learning to write an Invisible XML grammar is no more difficult that learning
any other schema language and is worth the effort if you have a use-case where it would
be useful. Although I would recommend that for your first grammar you too seek out a
textual input that already has a very clearly defined, simple, stable and small content
model.

It was a relief to confirm that there are viable options other than eyeballing for testing an
iXML grammar during development, not least because the notation for an iXML grammar
is quite symbol-heavy which can make typos tricky to spot. Tests are also important in
the maintenance of a grammar though, so that developers can fix bugs or extend the
content model with greater confidence that their changes haven't introduced unintended
side-effects. Especially if the person making the change wasn't involved in writing the
grammar originally - or even if they were but it's been a long time since they worked on it.

Once the invisible-xml() XPath/XQuery function is more widely supported it will be trivially
easy to use XSpec to test an iXML grammar, per the approach proposed by Amanda
Galtman. And if you already have the option to do so using XQuery, BaseX and Markup
Blitz then you should try it out; it's not complicated.

While my own project has served it's purpose of helping me to learn to write and work
with iXML grammars - and better understand how XSpec works under-the-hood - I believe
it will be redundant as soon as the invisible-xml() XPath/XQuery function is more widely
supported.

Automation

31

Bibliography

[IXML] Invisible XML Specification 1.0, 20 Jun 2022. W3C Invisible Markup Community
Group. https://invisiblexml.org/1.0/

[IMCG] W3C Invisible Markup Community Group. Invisible XML. https://invisiblexml.org/

[PEM2013] Pemberton, Steven. Invisible XML. Presented at Balisage: The Markup
Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage:
The Markup Conference 2013. Balisage Series on Markup Technologies, vol. 10 (2013).
https://doi.org/10.4242/BalisageVol10.Pemberton01

[XML1-0] Extensible Markup Language (XML) 1.0 (Fifth Edition), 26 Nov 2008. W3C.
https://www.w3.org/TR/xml/

[CPOT] Tovey-Walsh, Norm. CoffeePot: An Invisible XML processor, version 3.2.9. NineML.
https://docs.nineml.org/current/coffeepot/

[CIR2017] Cirulli, Sandro. XSpec v0.5.0. Presented at XML London 2017, London,
England, June 10 - 11, 2017. In XML London 2017 Conference Proceedings. https://
xmllondon.com/2017/xmllondon-2017-proceedings.pdf

[GAL2024] Galtman, Amanda. Stretching XPath: Three Testing Tales: Beyond Primary
Use Cases of Certain XML Functions and Standards. Presented at Balisage: The
Markup Conference 2024, Washington, DC, July 29 - August 2, 2024. In Proceedings of
Balisage: The Markup Conference 2024. Balisage Series on Markup Technologies, vol.
29 (2024). https://doi.org/10.4242/BalisageVol29.Galtman01.

[TDD] Wikipedia contributors. Test-driven development. Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Test-driven_development

[WHATXSP] XSpec wiki contributors. What is XSpec. XSpec Wiki. https://github.com/xspec/
xspec/wiki/What-is-XSpec

[GALMED] Galtman, Amanda. Testing Invisible XML using XSpec: XPath 4.0 and
BaseX Pave the Way. Medium, 7 Aug 2024. https://medium.com/@xspectacles/testing-
invisible-xml-using-xspec-e2b11b24b486

[GETST] XSpec wiki contributors. Getting Started. XSpec Wiki.https://github.com/xspec/
xspec/wiki/Getting-Started

[XPATH4] XPath and XQuery Functions and Operators 4.0, W3C Editor’s Draft, 27 May
2025. W3C. https://qt4cg.org/specifications/xpath-functions-40/

[WRITEXSPEC] XSpec wiki contributors. Writing Scenarios. XSpec Wiki. https://
github.com/xspec/xspec/wiki/Writing-Scenarios

[XPROCIXML] XProc 3.1: Invisible XML, Community Group Report, 16 March 2024. W3C.
https://spec.xproc.org/master/head/ixml/

[CMS2023] Sperberg-McQueen, C.M. Keyboarding Frege's concept writing: A case study
in the use of invisible XML. Presented at Balisage: The Markup Conference 2023,
Washington DC, July 31 - August 4, 2023. In Proceedings of Balisage: The Markup
Conference 2023. Balisage Series on Markup Technologies, vol. 28 (2023). https://
doi.org/10.4242/BalisageVol28.Sperberg-McQueen01

[UNIGEN] Table 4-4. General_Category Values in Chapter 4: Character Properties
in The Unicode Standard Version 16.0 – Core Specification, 10 Sept 2024.

Conclusion

32

https://invisiblexml.org/1.0/
https://invisiblexml.org/
https://doi.org/10.4242/BalisageVol10.Pemberton01
https://www.w3.org/TR/xml/
https://docs.nineml.org/current/coffeepot/
https://xmllondon.com/2017/xmllondon-2017-proceedings.pdf
https://xmllondon.com/2017/xmllondon-2017-proceedings.pdf
https://doi.org/10.4242/BalisageVol29.Galtman01
https://en.wikipedia.org/wiki/Test-driven_development
https://github.com/xspec/xspec/wiki/What-is-XSpec
https://github.com/xspec/xspec/wiki/What-is-XSpec
https://medium.com/@xspectacles/testing-invisible-xml-using-xspec-e2b11b24b486
https://medium.com/@xspectacles/testing-invisible-xml-using-xspec-e2b11b24b486
https://github.com/xspec/xspec/wiki/Getting-Started
https://github.com/xspec/xspec/wiki/Getting-Started
https://qt4cg.org/specifications/xpath-functions-40/
https://github.com/xspec/xspec/wiki/Writing-Scenarios
https://github.com/xspec/xspec/wiki/Writing-Scenarios
https://spec.xproc.org/master/head/ixml/
https://doi.org/10.4242/BalisageVol28.Sperberg-McQueen01
https://doi.org/10.4242/BalisageVol28.Sperberg-McQueen01

The Unicode Consortium. https://www.unicode.org/versions/Unicode16.0.0/core-spec/
chapter-4/#G134153

[XML1-1] Extensible Markup Language (XML) 1.1 (Second Edition), 29 Sep 2006. W3C.
https://www.w3.org/TR/xml11/

[WIKINON] Wikipedia contributors. Noncharacters section in Universal Character
Set Characters. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/
Universal_Character_Set_characters#Non-characters

[UNINON] Corrigendum #9: Clarification About Noncharacters. The Unicode Consortium.
https://www.unicode.org/versions/corrigendum9.html

[CHARDISCUSS] Tovey-Walsh, Norm. An easy-to-miss-error. W3C Invisible XML
Community Group Mailing List. 4 Nov 2023. Archive of discussion thread available at:
https://lists.w3.org/Archives/Public/public-ixml/2023Nov/0001.html

[IXMLNAMES] Tovey-Walsh, Norm. Understanding (i)XML names. Github.com. https://
github.com/invisibleXML/ixml/blob/master/misc/understanding-names.md

A. Invisible XML Grammar for a DOCTYPE declaration

Invisible XML Grammar for a DOCTYPE declaration

33

https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-4/#G134153
https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-4/#G134153
https://www.w3.org/TR/xml11/
https://en.wikipedia.org/wiki/Universal_Character_Set_characters#Non-characters
https://en.wikipedia.org/wiki/Universal_Character_Set_characters#Non-characters
https://www.unicode.org/versions/corrigendum9.html
https://lists.w3.org/Archives/Public/public-ixml/2023Nov/0001.html
https://github.com/invisibleXML/ixml/blob/master/misc/understanding-names.md
https://github.com/invisibleXML/ixml/blob/master/misc/understanding-names.md

B. Chronological List of Past Papers on Invisible XML

Pemberton, Steven. Invisible XML. Presented at Balisage: The Markup Conference 2013,
Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup
Conference 2013. Balisage Series on Markup Technologies, vol. 10 (2013). https://
doi.org/10.4242/BalisageVol10.Pemberton01

Pemberton, Steven. Data Just Wants to Be Format-Neutral. Presented at XML
Prague 2016, Prague, Czech Republic, February 11-13, 2016. In XML Prague
2016 Conference Proceedings. https://archive.xmlprague.cz/2016/files/xmlprague-2016-
proceedings.pdf#d6e2656

Pemberton, Steven. Parse Earley, Parse Often: How to Parse Anything to XML. Presented
at Presented at XML London 2017, London, England, June 4 - 10, 2016. In XML
London 2016 Conference Proceedings. https://xmllondon.com/2016/xmllondon-2016-
proceedings.pdf

Pemberton, Steven. On the Descriptions of Data. Presented at XML Prague 2017, Prague,
Czech Republic, February 9-11, 2017. In XML Prague 2017 Conference Proceedings.
https://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#d6e3022

Pemberton, Steven. On the Specification of Invisible XML Presented at XML
Prague 2019, Prague, Czech Republic, February 7-9, 2019. In XML Prague
2019 Conference Proceedings. https://archive.xmlprague.cz/2019/files/xmlprague-2019-
proceedings.pdf#page=425

Mason, James David. Do we really want to see markup?. Presented at Balisage:
The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019.
In Proceedings of Balisage: The Markup Conference 2019. Balisage Series on
Markup Technologies, vol. 23 (2019). https://www.balisage.net/Proceedings//vol23/html/
Mason01/BalisageVol23-Mason01.html

Sperberg-McQueen, C. M. Aparecium: An XQuery / XSLT library for invisible XML.
Presented at Balisage: The Markup Conference 2019, Washington, DC, July 30
- August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
Balisage Series on Markup Technologies, vol. 23 (2019). https://doi.org/10.4242/
BalisageVol23.Sperberg-McQueen01

Hillman, Tom. JayParser: an Invisible XML implementation in XSLT. Presented at
Declarative Amsterdam 2020, Amsterdam, Netherlands, October 8-9, 2020. https://
declarative.amsterdam/presentations/da.2020.hillman.jayparser

Sperberg-McQueen, C.M. Aparecium, an XQuery / XSLT parser library for invisible
XML. Presented at Declarative Amsterdam 2021, Amsterdam, Netherlands,
November 4-5, 2021. https://declarative.amsterdam/presentations/da.2021.sperberg-
mcqueen.aparecium

Pemberton, Steven. A Pilot Implementation of ixml. Presented at XML
Prague 2022, Prague, Czech Republic, June 9-11, 2022. In XML Prague
2022 Conference Proceedings. https://archive.xmlprague.cz/2022/files/xmlprague-2022-
proceedings.pdf#page=51

Hillman, Tomos, John Lumley, Steven Pemberton, C. M. Sperberg-McQueen, Bethan
Tovey-Walsh and Norm Tovey-Walsh. Invisible XML coming into focus: Status report
from the community group. Presented at Balisage: The Markup Conference 2022,
Washington, DC, August 1 - 5, 2022. In Proceedings of Balisage: The Markup
Conference 2022. Balisage Series on Markup Technologies, vol. 27 (2022). https://
www.balisage.net/Proceedings//vol27/html/Eccl01/BalisageVol27-Eccl01.html

Chronological List of Past Papers on Invisible XML

34

https://doi.org/10.4242/BalisageVol10.Pemberton01
https://doi.org/10.4242/BalisageVol10.Pemberton01
https://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#d6e2656
https://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#d6e2656
https://xmllondon.com/2016/xmllondon-2016-proceedings.pdf
https://xmllondon.com/2016/xmllondon-2016-proceedings.pdf
https://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#d6e3022
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf#page=425
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf#page=425
https://www.balisage.net/Proceedings//vol23/html/Mason01/BalisageVol23-Mason01.html
https://www.balisage.net/Proceedings//vol23/html/Mason01/BalisageVol23-Mason01.html
https://doi.org/10.4242/BalisageVol23.Sperberg-McQueen01
https://doi.org/10.4242/BalisageVol23.Sperberg-McQueen01
https://declarative.amsterdam/presentations/da.2020.hillman.jayparser
https://declarative.amsterdam/presentations/da.2020.hillman.jayparser
https://declarative.amsterdam/presentations/da.2021.sperberg-mcqueen.aparecium
https://declarative.amsterdam/presentations/da.2021.sperberg-mcqueen.aparecium
https://archive.xmlprague.cz/2022/files/xmlprague-2022-proceedings.pdf#page=51
https://archive.xmlprague.cz/2022/files/xmlprague-2022-proceedings.pdf#page=51
https://www.balisage.net/Proceedings//vol27/html/Eccl01/BalisageVol27-Eccl01.html
https://www.balisage.net/Proceedings//vol27/html/Eccl01/BalisageVol27-Eccl01.html

Hillman, Tomos, C. M. Sperberg-McQueen, Bethan Tovey-Walsh and Norm Tovey-Walsh.
Designing for change: Pragmas in Invisible XML as an extensibility mechanism.
Presented at Balisage: The Markup Conference 2022, Washington, DC, August 1 - 5,
2022. In Proceedings of Balisage: The Markup Conference 2022. Balisage Series on
Markup Technologies, vol. 27 (2022). https://www.balisage.net/Proceedings//vol27/html/
Sperberg-McQueen01/BalisageVol27-Sperberg-McQueen01.html

Sperberg-McQueen, C. M. Keyboarding Frege's concept writing: A case study in the use
of invisible XML. Presented at Balisage: The Markup Conference 2023, Washington,
DC, July 31 - August 4, 2023. In Proceedings of Balisage: The Markup Conference
2023. Balisage Series on Markup Technologies, vol. 28 (2023). https://doi.org/10.4242/
BalisageVol28.Sperberg-McQueen01

Tovey-Walsh, Norm. Ambiguity in iXML: And How to Control It. Presented at Balisage: The
Markup Conference 2023, Washington, DC, July 31 - August 4, 2023. In Proceedings of
Balisage: The Markup Conference 2023. Balisage Series on Markup Technologies, vol.
28 (2023). https://doi.org/10.4242/BalisageVol28.Tovey-Walsh01

Conrad, Kurt. Word processing is so last century: Formalizing internal narratives using
internal declarations and making them look pretty. Presented at Markup UK 2023,
London, England, June 1-3. In Markup UK 2023 Proceedings. https://markupuk.org/
2023/pdf/Markup-UK-2023-proceedings.pdf#d5e2236

Pemberton, Steven. A Declarative Code Browser with iXML and XForms. Presented
at Declarative Amsterdam, Amsterdam, Netherlands, November 2-3, 2023. https://
declarative.amsterdam/presentations/da.2023.pemberton.declarative-code-browser

Nordström, Ari. It’s Useful After All – VIN Numbers, DITA, and iXML. Presented
at XML Prague 2024, Prague, Czech Republic, June 6-8, 2024. In XML Prague
2024 Conference Proceedings. https://archive.xmlprague.cz/2024/files/xmlprague-2024-
proceedings.pdf#page=305

Courtney, Joseph Michael, and Michael Robert Gryk. Pulse, Parse, and Ponder: Using
Invisible XML to Dissect a Scientific Domain Specific Language. Presented at
Balisage: The Markup Conference 2024, Washington, DC, July 29 - August 2,
2024. In Proceedings of Balisage: The Markup Conference 2024. Balisage Series on
Markup Technologies, vol. 29 (2024). https://www.balisage.net/Proceedings//vol29/html/
Courtney01/BalisageVol29-Courtney01.html

Holstege, Mary. Invisible Fish: API Experimentation with InvisibleXML. Presented at
Balisage: The Markup Conference 2024, Washington, DC, July 29 - August 2, 2024.
In Proceedings of Balisage: The Markup Conference 2024. Balisage Series on Markup
Technologies, vol. 29 (2024). https://doi.org/10.4242/BalisageVol29.Holstege01

Lumley, John. Variations on an Invisible Theme: Using iXML to produce XML to produce
iXML to produce …. Presented at Balisage: The Markup Conference 2024, Washington,
DC, July 29 - August 2, 2024. In Proceedings of Balisage: The Markup Conference
2024. Balisage Series on Markup Technologies, vol. 29 (2024). https://doi.org/10.4242/
BalisageVol29.Lumley01

Nordström, Ari. Adventures in Mainframes, Text-based Messaging, and iXML. Presented
at Balisage: The Markup Conference 2024, Washington, DC, July 29 - August 2, 2024.
In Proceedings of Balisage: The Markup Conference 2024. Balisage Series on Markup
Technologies, vol. 29 (2024). https://doi.org/10.4242/BalisageVol29.Nordstrom01

Sperberg-McQueen, C. M. From Word to XML via iXML: a Word-first XML workflow in the
TLRR 2e project. Presented at Balisage: The Markup Conference 2024, Washington,
DC, July 29 - August 2, 2024. In Proceedings of Balisage: The Markup Conference

Chronological List of Past Papers on Invisible XML

35

https://www.balisage.net/Proceedings//vol27/html/Sperberg-McQueen01/BalisageVol27-Sperberg-McQueen01.html
https://www.balisage.net/Proceedings//vol27/html/Sperberg-McQueen01/BalisageVol27-Sperberg-McQueen01.html
https://doi.org/10.4242/BalisageVol28.Sperberg-McQueen01
https://doi.org/10.4242/BalisageVol28.Sperberg-McQueen01
https://doi.org/10.4242/BalisageVol28.Tovey-Walsh01
https://markupuk.org/2023/pdf/Markup-UK-2023-proceedings.pdf#d5e2236
https://markupuk.org/2023/pdf/Markup-UK-2023-proceedings.pdf#d5e2236
https://declarative.amsterdam/presentations/da.2023.pemberton.declarative-code-browser
https://declarative.amsterdam/presentations/da.2023.pemberton.declarative-code-browser
https://archive.xmlprague.cz/2024/files/xmlprague-2024-proceedings.pdf#page=305
https://archive.xmlprague.cz/2024/files/xmlprague-2024-proceedings.pdf#page=305
https://www.balisage.net/Proceedings//vol29/html/Courtney01/BalisageVol29-Courtney01.html
https://www.balisage.net/Proceedings//vol29/html/Courtney01/BalisageVol29-Courtney01.html
https://doi.org/10.4242/BalisageVol29.Holstege01
https://doi.org/10.4242/BalisageVol29.Lumley01
https://doi.org/10.4242/BalisageVol29.Lumley01
https://doi.org/10.4242/BalisageVol29.Nordstrom01

2024. Balisage Series on Markup Technologies, vol. 29 (2024). https://doi.org/10.4242/
BalisageVol29.Sperberg-McQueen01

Tovey-Walsh, Bethan. When women do algorithms: a semi-generative approach to overlay
crochet with iXML and XSLT. Presented at Balisage: The Markup Conference 2024,
Washington, DC, July 29 - August 2, 2024. In Proceedings of Balisage: The Markup
Conference 2024. Balisage Series on Markup Technologies, vol. 29 (2024). https://
doi.org/10.4242/BalisageVol29.Tovey-Walsh01

Pemberton, Steven. Banking with iXML and XForms. Presented at Declarative Amsterdam
2024, Amsterdam, Netherlands, November 7-8, 2024. https://declarative.amsterdam/
presentations/da.2024.pemberton.banking

Verwer, Nico and Lamers, Pieter. Syntax highlighting for code blocks using iXML.
Presented at Declarative Amsterdam 2024, Amsterdam, Netherlands, November 7-8,
2024. https://declarative.amsterdam/presentations/da.2024.verwer.syntax-highlighting-
using-ixml

Chronological List of Past Papers on Invisible XML

36

https://doi.org/10.4242/BalisageVol29.Sperberg-McQueen01
https://doi.org/10.4242/BalisageVol29.Sperberg-McQueen01
https://doi.org/10.4242/BalisageVol29.Tovey-Walsh01
https://doi.org/10.4242/BalisageVol29.Tovey-Walsh01
https://declarative.amsterdam/presentations/da.2024.pemberton.banking
https://declarative.amsterdam/presentations/da.2024.pemberton.banking
https://declarative.amsterdam/presentations/da.2024.verwer.syntax-highlighting-using-ixml
https://declarative.amsterdam/presentations/da.2024.verwer.syntax-highlighting-using-ixml

XForms Extended
for XSLTForms
Charafeddine Cheraa, Muthabr

The web scene has exploded in the last couple of decades, transitioning from static
web pages to dynamic, responsive web applications. Facilitating that are frameworks
like React, Vue, Svelte, and Angular that prioritize user experience, component-based
architecture, and seamless integration with modern APIs, without sacrificing the
developer experience.

Meanwhile, XForms, while powerful for data-centric applications, has for the most part
fallen behind. Its development has not caught up with these rapid changes, leaving a
growing gap in terms of modern UI/UX capabilities, component flexibility, and integration
with the wider web development ecosystem. This disparity is not just a matter of
preference; it risks XForms becoming irrelevant.

While the development of XForms 2.0 is ongoing, the progress has been undeniably
slow, inviting a different approach to address these issues rather than waiting for the
eventual arrival of XForms 2.0. The web is not waiting for XForms, and the momentum
behind competing technologies continues to build.

We think that leveraging existing web technologies to address the most pressing
limitations of current XForms might be a more beneficial approach.

The idea we came up with is to use a syntax similar to XForms (let's call it Extended
XForms for now), which then will be converted to XForms code. This syntax will extend
the original one in three ways:

1. Style extension this makes minor or no changes to the XML code, but introduces
new CSS styles, mostly for layouts, but also for theming when needed.

2. Basic extension: the simple and concise syntax of Extended XForms is converted to
regular XForms, which then can be used as any other XForms document.

These extra functionalities can be done in pure XForms but will be complex and
difficult to implement and maintain.

This may also introduce extra JavaScript code for extra functionalities.

3. Functional extension this provides additional functionality not currently in XForms,
commonly to read data directly from XForms models, write data, and listen to
changes.

Functional extensions depend on the XForms renderer and will not work in the same
way for all XForms implementations.

38

1. Introduction

The web scene has exploded in the last couple of decades, transitioning from static
web pages to dynamic, responsive web applications. And facilitating that is frameworks
like React, Vue, Svelte, and Angular which prioritize user experience, component-based
architecture, and seamless integration with modern APIs, without sacrificing the developer
experience.

Meanwhile, XForms, while powerful for data-centric applications, has for the most part
remained fallen behind. Its development is not catching up with these rapid changes,
leaving a growing gap in terms of modern UI/UX capabilities, component flexibility, and
integration with the wider web development ecosystem. This disparity is not just a matter of
preference; it risks XForms becoming irrelevant.

While the development of XForms 2.0 is still ongoing, the progress has been undeniably
slow, which makes taking a different approach to fix this issue sound better than
anticipating the eventual arrival of XForms 2.0. The web is not waiting for XForms, and
the momentum behind competing technolgies continues to build.

We think that leveraging existing web technologies to address the most pressing limitations
of current XForms, might be a more beneficial approach.

2. The problem

XForms is a W3C standard for creating powerful, XML-based web forms that separate
data, logic, and presentation. It allows developers to build dynamic, interactive forms with
built-in features like data validation, calculations, and conditional logic, all without scripting.
XForms is best used in data-intensive applications such as enterprise systems, government
portals, and document processing workflows, especially where structured data and XML
integration are important.

However, if you try to use it for other applications, issues will start to pop up. Usually, it's
either something missing so you can't simply implement it, or something that can be done,
but it clearly could be much easier.

Consider the following screenshot as an example to better understand the issues:

Figure 1. Concept design of a SaaS amdin dashboard

Introduction

39

Can we make this in XForms? Yes.

Will it be in XForms alone? Most likely not.

Will it be easy? Definitely not.

Will the code be straightforward and easy to maintain? No, and it will definitely get more
complicated when you need two of the same complex element.

Why is that? And can we avoid it?

2.1. Issue #1: Cumbersome layouts

Let's first talk about the layout. We have a side navigation bar, a top bar, and the page
content. Both of the sidebar and the top bar are common UI elements that are widely used,
as well as the general layout.

This layout can be easily achieved with css:

<head>
 <style>
 #app {
 display: flex;
 gap: 4px;
 flex-direction: row;
 height: 100vh;
 }
 #body {
 flex: 1;
 display: flex;
 flex-direction: column;
 gap: 4px;
 }
 #sidebar {
 width: 200px;
 }
 #topbar {
 height: 60px;
 }
 #content {
 flex: 1;
 }
 #sidebar, #topbar, #content {
 font-size: 32px;
 border: 1px solid black;
 padding: 10px;
 line-height: 60px;
 }
 </style>
</head>
<body>
 <div id="app">
 <div id="sidebar">
 <div>Sidebar</div>
 </div>
 <div id="body">
 <div id="topbar">

Issue #1: Cumbersome layouts

40

 <div>Topbar</div>
 </div>
 <div id="content">
 <div>Content</div>
 </div>
 </div>
 </div>
</body>

Then, depending on our use case we may need to add some XForms code to control some
aspects of the layout, i.e. the sidebar's width:

<div id="sidebar" style="width:{if (instance('app')/sidebar-collapsed ↩
= 'true', 40, 200)}px">

This will work, but wouldn't be better if we could write something like:

<body>
 <app-layout>
 <sidebar collapsed="instance('app')/sidebar-collapsed = 'true'">
 <div>Sidebar</div>
 </sidebar>
 <topbar height="60">
 <div>Topbar</div>
 </topbar>
 <main>
 <div>Content</div>
 </main>
 </app-layout>
</body>

This does not introduce anything that we don't already have; its only appeal is that it is
much simpler than the original XHTML/XForms code.

2.2. Issue #2: Complex logic

Let's now look at the content of the page. We can see some charts, which also can be
made with XForms. For example:

<div class="chart">
 <svg width="430" height="290" xmlns="http://www.w3.org/2000/svg">
 <rect width="100%" height="100%" fill="#f8f9fa" />
 <line x1="10" y1="10" x2="10" y2="260" stroke="#333" />
 <line x1="10" y1="260" x2="420" y2="260" stroke="#333" />
 <g fill="#4a90e2">
 <xf:repeat ref="instance('chart')/bars/entry" id="bar">
 <rect x="{-20 + position() * 40}" y="{10 + (100 - .) * 2.5}" ↩
width="30" height="{. * 2.5}" />
 </xf:repeat>
 </g>
 <g font-size="10" fill="#000" text-anchor="middle">
 <xf:repeat ref="instance('chart')/bars/entry" id="bar">
 <text x="{-5 + position() * 40}" y="275">
 <xf:output value="."/>

Issue #2: Complex logic

41

 </text>
 </xf:repeat>
 </g>
 </svg>
</div>

Again, this code works as intended, but what if we could use this instead:

<chart type="bar" data="instance('chart')/bars/entry" />

Once again, the appeal of this syntax is its simplicity. What makes it even more appealing
is that the chart appears multiple times on this page alone, and this concise syntax will not
create a mess when repeated.

2.3. Issue #3: The need for advanced JavaScript code

Now imagine that we need to make the previous charts show live data. We simply cannot
do it. We can set a JavaScript interval to poll new data from the server, every, let's say, 5
seconds, but then, how are we going to let XForms know what the newly pooled data is?

We can instead use a submission to refresh the data, but how are we going to trigger it
from a JavaScript interval?

Actually, we can do both, but it depends on the renderer. For XSLTForms, for example, we
can locate the xforms-model element dispatch an event from JavaScript, listen for it on
XForms, and refresh whenever it's triggered. This works with XSLTForms 1.7 but not with
previous versions because they don't build the HTML page in the same way.

// javascript code
setInterval(function () {
 document.querySelector('xforms-model').dispatchEvent(new ↩
CustomEvent('on-refresh'));
}, 5000);

<!-- xforms code -->
<xf:submission id="refresh" method="get" action="/refresh" ↩
replace="instance" instance="test-data"></xf:submission>
<xf:send submission="refresh" ev:event="on-refresh" />

However, what if we want a better solution? What if we want to use sockets instead? How
complex would implementing that be? Is it worth the trouble, or would it just be a half-baked
solution that is slightly easier to implement?

Wouldn't it be much better if we could write something like the following instead:

<chart type="bar" data-url="/load-data/bar-chart" refresh- ↩
interval="5" />

or

<chart type="bar" data-socket="bars-chart" />

Issue #3: The need for advanced JavaScript code

42

3. The proposed solution:

We came up with Extended XForms to avoid the above issues and try to end up with the
best possible XForms user and developer experience.

The idea of Extended XForms is simple: an XSLT stylesheet that transforms the easy-to-
understand Extended XForms code to regular XForms so the developer does not need to
do everything themselves.

3.1. XForms code
This is still experimental and will most likely change later

We have a main stylesheet that crawls the whole source of Extended XForms documents.

<xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

The main stylesheet does not alter the actual code except for <xhtml:head>. We output
its existing content, and then we add a link to our CSS stylesheet and our JavaScript file.

We then find the main model and append a new instance to it that will hold data managed
by Extended XForms.

In the future, we will probably add a separate model specifically for Extended XForms

We also apply templates with specific modes, more on this later.

<!-- html -->
<xsl:template match="xh:head">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 <xh:script src="/res/xx-forms.js" type="text/javascript" />
 <xh:link href="/res/xx-forms.css" type="text/css" ↩
rel="StyleSheet"/>
 <xsl:apply-templates select="node()"/>
 <xsl:apply-templates select="/" mode="head" />
 <xsl:apply-templates select="/" mode="style" />
 </xsl:copy>
</xsl:template>
<!-- model -->
<xsl:template match="xf:model[1]">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates select="node()"/>
 <xf:instance id="xxforms">
 <data>
 <xsl:apply-templates select="/" mode="model" />
 </data>
 </xf:instance>
 <xsl:apply-templates select="/" mode="events" />
 </xsl:copy>
</xsl:template>

The proposed solution:

43

This alone provides custom CSS classes that can be used directly by the developer.
However, most of these classes are meant to be used by Extended XForms. The rest of
CSS classes are mostly for theming.

It also provides low-level JavaScript functions allowing:

◆ Setting XForms data, nodes and attributes.

◆ Reading XForms data, also nodes or attributes.

◆ Listening to data changes.

The main stylesheet includes other stylesheets, each for a specific task (a feature, a
component, a style, etc.). These stylesheets use the special modes to add their own styles,
data, and events.

If needed, the stylesheet can also add a template that matches a specific Extended XForms
syntax and replace it with XForms code.

<xsl:template match="xxf:sidebar">
...
</xsl:template>

3.2. JavaScript and CSS code

This is still experimental and will most likely change later

Extended XForms has its own JavaScript code that provides the following functionalities:

◆ Retrieve a model

◆ Retrieve an instance

◆ Retrieve a specific data node in an instance

◆ Retrieve an attribute

◆ Update a data node

◆ Track a specific data node's changes.

Unfortunately, these rely heavily on the specific XSLTForms implementation and will not
work with XSLTForms versions that use a different implementation, let alone other XForms
frameworks.

Even though these functions can be used directly by the developer, they were implemented
to be used by the JavaScript code from other Extended XForms stylesheets.

3.3. Extended XForms Components

The real extension of XForms happens here. The main stylesheet includes different
stylesheets for different extended component, such as tabs, menus, charts, etc.

These components mainly replace their Extended XForms code with proper XForms code.
For example, for a video component, the main stylesheet we would have:

<xsl:include href="xx-video.xsl"/>

And in xx-video.xsl:

JavaScript and CSS code

44

<xsl:template match="xx:video">
 <xhtml:video controls="controls">
 <xsl:attribute name="src">{<xsl:value-of select="@src" />}</ ↩
xsl:attribute>
 </xhtml:video>
</xsl:template>

This converts this Extended XForms code:

<xx:video src="instance('test-data')/video" />

To XForms code:

<xhtml:video controls="controls" src="{instance('test-data')/video}" ↩
/>

The component stylesheet can also hook to the template modes applied by the main
stylesheet as needed. For example, we can use the model mode to add data specific to
video components:

<xsl:template match="/" mode="model" priority="10">
 <video>
 <curtently-playing>none</curtently-playing>
 </video>
 <xsl:next-match />
</xsl:template>

The same can be done with the other modes:

◆ model to add component-specific data.

◆ head to add component-specific script.

◆ style to add component-specific CSS.

◆ events to listen to events.

4. Weaknesses and Limitations

This whole idea of extending XForms, as good as it sounds, still has many flaws:

◆Much of the project relies heavily on a specific implementation of XForms, XSLTForms
1.7, which is why it will not work with other frameworks (like Orbeon).

The same principle may or may not be applicable to other implementations. Even if it is, it
will need a complete rewrite of the JavaScript code.

◆ The idea of Extended XForms is to fill the gap between current XForms and the rest of
the web, meaning that getting a new version of XForms will heavily affect the project.
Most of the code will need to be rewritten, some completely scrapped, and when XForms
2.0 gets to the point that this project is no longer needed, it can be put away for good.

◆ Although this project helps developers write less code, the final XForms code is still large
and complex, and unfortunately we can do little to improve its performance when it starts
to decline.

Weaknesses and Limitations

45

◆ Extended XForms syntax is very opinionated; it may look good to some, but for others, it
may seem like an extra step rather than a shortcut.

◆ The current implementation uses many CSS and JavaScript files, and although small,
they add a bit of a burden on the page's first load. Not to mention that the implementation
includes even code that might not be needed in the form being rendered.

5. What's next

Extended XForms can be improved in a number of ways:

◆ Somehow rewrite the layer connecting JavaScript and XForms entirely in XForms code. If
doable, Extended XForms will no longer depend on a specific implementation, opening it
up to be used by a larger group of developers.

◆ Improve the transformation to account for what needs to be included (CSS and
JavaScript code) to reduce the the extra footprint. Also bundle the code in one file, rather
than loading multiple files.

◆ Streamline the way we write components, allowing for easy updates, easily removing
unneeded components, and adding new components. Also, allow the users to write their
own components to use in their projects or share with others. This will bring faster
updates and help the project not fall behind the rapid growth we are trying to match.

◆ As for the performance issue, there's only so much we can do. The only way to work
around that is to write a new XForms preprocessor/renderer from scratch, which is not a
somple task by any means.… but doable... maybe?

Bibliography

W3C: XForms 1.1 W3C Recommendation. 20 October 2009. https://www.w3.org/TR/
xforms11/

XForms Users Community Group: XForms 2.0. https://www.w3.org/community/
xformsusers/wiki/XForms_2.0

Alain Couthures: XSLTForms. GitHub repository. https://github.com/AlainCouthures/
xsltforms

Alain Couthures: XSLTForms. SourceForge repository. https://sourceforge.net/projects/
xsltforms/

Orbeon Forms. https://www.orbeon.com/

Webframe: Concept designs. used for demonstration. https://webframe.xyz/

What's next

46

https://www.w3.org/TR/xforms11/
https://www.w3.org/TR/xforms11/
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://github.com/AlainCouthures/xsltforms
https://github.com/AlainCouthures/xsltforms
https://sourceforge.net/projects/xsltforms/
https://sourceforge.net/projects/xsltforms/
https://www.orbeon.com/
https://webframe.xyz/

Processing JSON with Template Rules
Michael Kay, Saxonica Ltd

This paper describes a case study exploring how effective the current design of XSLT
4.0 is in processing JSON files with a recursive structure, using the rule-based recursive
descent design pattern familiar to XSLT users. It explores the conversion of an existing
non-trivial XSLT-based application (a transpiler that converts Java source code to C#)
to see how well it would be able to cope if the input were JSON rather than XML. The
exercise has led to a number of changes in the proposed features of XSLT 4.0, and
identifies other areas where the design could be further improved.

1. Introduction

XSLT 3.0, together with its accompanying specifications such as XPath 3.1, introduced
support for processing and generating JSON alongside XML. The new features have
proved useful, but they have known limitations.

Saxonica, for example, uses the JSON capabilities in XSLT 3.0 when processing new
online orders from customers for the Saxon product. We use a third-party service, Ecwid,
that supplies details of new orders in JSON format, and we use an XSLT application to
process this order, add the details to our XML orders database, and generate license keys
and email notifications to the customer. The application uses XForms and SaxonJS. It pulls
the JSON information from Ecwid using a call on fn:json-doc with an appropriate URI,
and then extracts the required data using path expressions such as

<xsl:variable
 name="subscriptionOption"
 select="$items?items?1?recurringChargeSettings"
 as="map(*)?" />

The JSON structure is straightforward, and the features in XSLT 3.0 and XPath 3.1 are
more than adequate to handle it. 1

But the capabilities of XSLT for processing JSON are more limited than the capabilities for
processing XML. One of these limitations, the one addressed in this paper, is the ability
to transform JSON using XSLT's quintessential processing model: rule-based recursive-
descent transformation using template rules.

A project is currently underway, informally known as QT4, to define 4.0 versions of the
XSLT, XPath, and XQuery languages. This project has been set up as a W3C Community
Group and meets weekly to discuss and agree proposed changes to the specification. The
activity can be tracked online at https://qt4cg.org/ and of course anyone is welcome
to participate. To date over 500 changes to the specifications have been accepted, and

1More details of this application can be found at [Delpratt and Lockett 2017]. At the time of that paper the Ecwid data feed was
plain text rather than JSON, but the paper does describe some other ways in which the application uses JSON internally.

48

most of these have been implemented in Saxon and/or BaseX; more than 12,000 test
cases have been added to the XQuery test suite alone, on top of the 32,000 test cases
already available for the 3.1 specifications2.

But I was concerned that we hadn't really tackled or solved the issues concerned with
recursive-descent transformation. Back in 2016, before XSLT 3.0 was even finalised, I
published a paper [Kay 2016] at XML Prague in 2016 giving a couple of worked examples
of JSON transformations using XSLT 3.0, coming to the rather unhappy conclusion that
they were best tackled by converting the JSON to XML, transforming the XML, and then
converting the XML back to JSON. I returned to these examples in a Balisage paper in
2022 [Kay 2022] where I showed that these two particular problems could be tackled much
more easily using new features proposed for XSLT 4.0; however I remained uneasy that
neither of the two problems really featured the recursive-descent processing paradigm.

So I resolved to conduct a case-study in which I would select a realistic application
in which recursive-descent rule-based transformation of JSON input was a requirement,
and use this application to test the usability of the XSLT 4.0 specifications in their
current state, and propose enhancements where they were found to be necessary. This
paper summarises the conclusions of that study. A blow-by-blow account containing
contemporaneous notes of the tasks undertaken can be found at https://github.com/
qt4cg/qtspecs/issues/1786; this paper focuses more on the final conclusions, and
ignores some of the avenues I followed that produced no useful insights.

2. Selecting the case study

The two key criteria for selecting a case study were (a) that use of JSON (rather than
XML) should be a natural choice for the input and output data, and (b) that the data
should be recursive — because it's with recursive data structures that the recursive-descent
processing model becomes a necessary part of the solution.

The application that best fitted these requirements was the Java-to-C# transpiler, which I
described at Markup UK in 2021: [Kay 2021] This is an application that is written almost
entirely in XSLT (with a small amount of control logic in Java and Gradle). It is a live
application, used internally by Saxonica on a daily basis to transform our Java source code
into C# source code, which is then used to build the SaxonCS product. The application runs
in several phases:

1. We preprocess the Java code using a Java preprocessor to exclude parts of the code
that are are not needed in SaxonCS.

We run the open-source JavaParser product to generate an XML representation of the
syntax tree of each (preprocessed) Java module in the Saxon product. This produces
around 110Mb of XML across 2100 files.

2. We analyse these files to produce a digest file. The digest contains a list of classes,
interfaces, and methods across the product as a whole, in a single XML file. The digest
is around 4Mb.

3. We refine the digest file, producing a modified version with augmented information. The
main purpose of this process is to work out which Java methods are overridden, so
that in the generated C#, the can be suitably annotated with virtual or override
modifiers, something that is not possible by looking at each Java module in isolation.

4. We then transform each of the XML modules into a C# serialization, taking account
of information in the digest file. This stage is a pure recursive-descent rule-based

2Data obtained, naturally, using Saxon and XQuery.

Selecting the case study

49

transformation, using around 350 template rules to handle each of the syntactic
constructs identified by the Java parser.

As written, the application doesn't use JSON. But what if it did? It's convenient that the
JavaParser product generates XML, but it didn't have to be that way: JSON would work just
as well. There's no mixed content, which is the key feature that would give XML a natural
advantage.

So the case study pretends that we're starting with a syntax tree in JSON rather than XML;
and furthermore, it explores the use of JSON (rather than XML) for the digest file. Rather
than converting the JavaParser to emit JSON, however, we start by converting the XML to
JSON, which also gives us a chance to test the new features in XSLT 4.0 for converting
XML to JSON.

Some might argue that using XSLT for converting Java to C# is not exactly a typical use
case for XSLT. That's a fair criticism. However, I've seen XSLT used for many applications
that you might not consider typical: for example, converting the output of a CAD tool
into instructions controlling a 3-D printer. Wherever complex data needs to be structurally
transformed, XSLT is a possible solution.

Note that it wasn't an aim of the case study to produce a complete working application.
Rather, the aim was to identify whether this was likely to be feasible, and what difficulties
might be encountered, and how proposed new language features might mitigate any
problems.

The remaining sections of the paper focus on what we learned examining each part of the
application.

3. Converting the input XML to JSON

This was an opportunity to try out the new fn:element-to-map function. I described the
basic design for this function in a paper at Balisage in 2023[Kay 2023], and we had an
implementation in Saxon ready to test.

The function doesn't convert lexical XML to lexical JSON: rather, it converts the XDM
representation of XML to the XDM representation of JSON (XDM being the X data model
that underpins XSLT and XQuery).

The idea of the function is that it converts each element type in one of a dozen or so
different ways, depending on the content model. The content model can be inferred either
from a schema, or from examination of a sample collection of input documents, or from an
individual element instance. I didn't try to do a schema-aware conversion because (a) no
schema was available, and (b) generating one wouldn't be particularly useful, because of
the way the particular XML vocabulary works. Specifically, a typical fragment of the XML
(representing the Java code if (iter.next() != null) {iter.close(); return
BooleanValue.FALSE}) looks like this:

 <statement nodeType="IfStmt">
 <condition nodeType="BinaryExpr" operator="NOT_EQUALS">
 <left nodeType="MethodCallExpr" >
 <name nodeType="SimpleName" identifier="next"/>
 <scope nodeType="NameExpr">
 <name nodeType="SimpleName" identifier="iter"/>
 </scope>
 </left>
 <right nodeType="NullLiteralExpr"/>

Converting the input XML to JSON

50

 </condition>
 <thenStmt nodeType="BlockStmt">
 <statements>
 <statement nodeType="ExpressionStmt">
 <expression nodeType="MethodCallExpr" >
 <name nodeType="SimpleName" identifier="close"/>
 <scope nodeType="NameExpr">
 <name nodeType="SimpleName" identifier="iter"/>
 </scope>
 </expression>
 </statement>
 <statement nodeType="ReturnStmt">
 <expression nodeType="FieldAccessExpr">
 <name nodeType="SimpleName" identifier="FALSE"/>
 <scope nodeType="NameExpr">
 <name nodeType="SimpleName"
 identifier="BooleanValue"/>
 </scope>
 </expression>
 </statement>
 </statements>
 </thenStmt>
 </statement>

The element names here (left, right, condition, thenStmt) tell you nothing about
what kind of thing the element is (and therefore what kind of structure its content has);
rather it tells you about where it fits into the structure of the parent element. It's the
nodeType attribute that tells you about the content model: if nodeType="condition"
then there will be children named left and right, while if nodeType="IfStmt" then
there will be children named condition, thenStmt, and optionally elseStmt.

This design, as well as making it difficult to construct a schema, also makes it difficult for
the element-to-map function to infer the right XML-to-JSON mapping to use for each
element name.

Another consequence of the design is that most of the transpiler consists of rules of the
form match="*[@nodeType='MethodCallExpr']": it is the nodeType attribute that
drives the processing, not the element name.

The elements-to-maps() function, as it was specified and implemented at the time, had
an option 'uniform':true() that caused the function to analyze the entire input and
infer a mapping for each element name that took into account all the elements encountered
with that name. By running this against the entire collection of 2100 input files, it ended up
making quite reasonable decisions, so far as one could tell. However, for constructs that
only appeared very rarely, it might have made a poor choice, and I probably wouldn't have
noticed because, in absence of a complete implementation of the transpiler, we didn't get
as far as testing that we were generating correct C# code at the end of the process.

It also became clear that examining all the structures that occur in the input to the function
doesn't necessarily give the right answer if you run the same conversion on a different set
of input files the following day. Because there is downstream code processing the JSON
output, it is vital that tomorrow's output is consistent with today's.

This experience led to a decision to make the choices made by the processor more visible
and open to scrutiny and adjustment. We split the function into two: element-to-map-
plan() takes a corpus of XML documents and generates a conversion plan, specifically a

Converting the input XML to JSON

51

so-called "layout" to be used for each element name. The second function, element-to-
map(), accepts this plan as input, and uses it to guide a specific conversion. The plan is
designed so it can itself be serialized as JSON, which means that (a) it can be modified by
hand, and (b) the same plan can be used consistently every time a conversion is run, even
though the original data is no longer available.

The JSON version of the XML fragment shown above ends up looking like this:

 {"_nodeType":"IfStmt",
 "condition":{"_nodeType":"BinaryExpr",
 "_operator":"NOT_EQUALS",
 "left":{"_nodeType":"MethodCallExpr",
 "name":{"_nodeType":"SimpleName",
 "_identifier":"next"
 },
 "scope":{"_nodeType":"NameExpr",
 "name":{"_nodeType":"SimpleName",
 "_identifier":"iter"
 }
 }
 },
 "right":{"_nodeType":"NullLiteralExpr"
 }
 },
 "thenStmt":{"_nodeType":"BlockStmt",
 "statements":[{"_nodeType":"ExpressionStmt",
 "expression":{"_nodeType":"MethodCallExpr",
 "name":{"_nodeType":"SimpleName",
 "_identifier":"close"
 },
 "scope":{"_nodeType":"NameExpr",
 "name":{"_nodeType":"SimpleName",
 "_identifier":"iter"
 }
 }
 }
 },

 {"_nodeType":"ReturnStmt",
 "expression":{"_nodeType":"FieldAccessExpr",
 "name":{"_nodeType":"SimpleName",
 "_identifier":"FALSE"
 },
 "scope":{"_nodeType":"NameExpr",
 "name":{"_nodeType":"SimpleName",
 "_identifier":"BooleanValue"
 }
 }
 }
 }
]
 }
 }

Converting the input XML to JSON

52

I decided to use "_" rather than "@" as a prefix for JSON properties derived from XML
attributes, on the grounds that the result is a valid NCName and can therefore be more
easily selected using the XPath lookup operator, for example $node?_nodeType. The
element-to-map function allows any prefix (or none) to be used.

The fragments shown above illustrate the XML and JSON representations of the
raw Java parse tree. In practice the JavaParser product also has an option
(the type solver) to decorate the parse tree with additional attributes containing
the inferred types of various constructs, and their expanded names. For example
the left node of the first condition above has two additional properties:
"_RETURN": "net.sf.saxon.value.AtomicValue", and "_RESOLVED_TYPE":
"com.saxonica.functions.qt4.DuplicateValues.DuplicatesIterator",
indicating that in the Java method call iter.next(), the type of iter is
com.saxonica.functions.qt4.DuplicateValues.DuplicatesIterator, and the
return type of the method call is net.sf.saxon.value.AtomicValue.

4. Serializing the parse tree

In the real transpiler, the final stage of processing is to take each of the XML (now JSON)
documents representing the parse tree of a module, and, with the aid of information in
the digest file, to generate corresponding C# code. This combines two tasks: handling any
differences between Java and C#, and then serializing the result (with sufficient indentation
and spacing to make it legible, since we're going to need to debug it).

For the sake of the case study, I decided to skip the business logic of Java to C#
conversion, and simply re-serialize the parse tree as Java code. This mirrored the
development approach I had used for the transpiler, where I first wrote template rules to
convert the parse tree back to Java, and then incrementally modified the XSLT to handle
cases where the C# needed to be different.

I didn't attempt to rewrite all the template rules, but converted a sufficient subset that
several of the larger Java modules could be successfully processed. I felt this would give us
all the feedback we needed on whether the task was feasible.

A typical (but very simple) template rule in the transpiler might look like this:

<xsl:template match="*[@nodeType='ReturnStmt']">
 <xsl:call-template name="indent"/>
 <xsl:text>return </xsl:text>
 <xsl:apply-templates select="*"/>
 <xsl:text>;{$NL}</xsl:text>
</xsl:template>

This rule processes an expression with @nodeType='ReturnStmt' and outputs the
(Java or C#) text "return XXX;" with suitable indentation, and followed by a newline.
The XXX here is constructed by recursive application of template rules to the single operand
of the return statement (if any): select="*" selects the operand, whatever it might be,
and processes it using its own template rule.

The rule doesn't need much changing to handle JSON instead of XML. It becomes:

<xsl:template match=".[?_nodeType='ReturnStmt']">
 <xsl:call-template name="indent"/>

Serializing the parse tree

53

 <xsl:text>return </xsl:text>
 <xsl:apply-templates select="?expression"/>
 <xsl:text>;{$NL}</xsl:text>
</xsl:template>

Some observations:

◆ match="." matches anything. We could have written match="map(*)" to
indicate that we're only interested in matching maps; or we could have written
match="record(_nodeType, *) to indicate that we're only interested in matching
maps having a "_nodeType property. I quite like the idea of combining that with the
predicate to allow syntax like match="record(_nodeType='ReturnStmt', *)" but
that's wishful thinking for now.

◆ The xsl:text instruction produces a text node. The stylesheet as a whole is producing
a text file (Java or C# source code), and the traditional way of doing that is to use the
XSLT text output method, with a result tree consisting entirely of text nodes. There's a lot
of inbuilt XML legacy there, but it works.

The variable {$NL} is used in preference to a literal newline because it doesn't disrupt
the indentation of the code. This is purely a matter of personal style.

Using the latest features in the XSLT 4.0 spec, we could replace the last three lines in
the template body with <xsl:text>return {apply-templates(?expression)};
{$NL}</xsl:text>, which some people might prefer.

◆ The original XSLT uses select="*" in the apply-templates instruction to select
all children; the revised XSLT uses select="?expression" to select only the
expression child. That is because the attributes and children of the element node
in the XML have all become named properties in the JSON, and ?* would select
them all. There's no convenient way with a lookup expression of saying something
like select="?* except ?_nodeType" (the XPath except operator only works with
nodes). We have an open issue on this.

It turns out to be rather convenient that we can define the match patterns of template
rules based on the properties of a map in the JSON, rather than on the associated
key. If instead of "right":{"_nodeType":"NullLiteralExpr"} we had to cope with
"NullLiteralExpr":{"_role":"right"} (a design that could equally well have been
chosen), then the matching would become rather more complex, as we shall see.

While most of the template rules in this stylesheet match on the value of the nodeType
attribute, this isn't true of all of them.

◆With the JSON tree, there's no obvious equivalent of match="/", which matches the
root of the tree. There's a good reason for this: the XDM model for JSON doesn't include
parent pointers, so a map or array that's at the top of the tree produced by parsing JSON
doesn't actually know that it's at the top of the tree.

With this example, we know that the JSON is in the form of a singleton map with the key
root: that is, the JSON starts with:

 { "root":{
 "_nodeType": "CompilationUnit",

Serializing the parse tree

54

 "packageDeclaration": {

and we can take advantage of this by using match="record(root)" to match the
outermost map.

◆ In other cases where the original stylesheet matched on element name, it was
usually possible to exploit redundancy in the data to match on properties instead.
For example the element with name packageDeclaration always has the attribute
nodeType="packageDeclaration", and the element with name imports contains a
sequence of elements each having the attribute nodeType="importDeclaration".

In one or two cases a template rule that matched on an element name (to handle a
particular part of an expression, such a the finally clause of a try/catch) could simply
be inlined into the calling template.

The conclusion from this exercise was that the conversion to handle JSON rather than XML
input was straightforward — but that we had been lucky. The template rules all matched on
attribute values rather than element names; and none of them made use of features such
as XML node identity, or access to parents, ancestors, or siblings, that would be difficult to
replicate in the JSON world.

Also: I've glossed over the fact that in this phase, I was merely looking at the code that
serializes the parse tree back to Java, and skipped the “business logic” that does the
conversion from Java to C#. That code, from a fairly superficial examination, includes a few
things that are rather harder to deal with:

◆ The template rules access information from the digest file using an xsl:key definition.
The key definition is essentially the same as that described in the subsequent section
Refining the digest file, and creates the same challenges.

◆ There are a number of functions and templates that use the parent or attribute
axis to examine the context of an expression. For example there is a function
isInterfaceMember that distinguishes methods defined in a class from methods
defined in an interface, which it does by searching the ancestor axis to see whether
the containing type is a class or an interface. With a JSON model there are always two
ways of tackling this: the needed context information (class or interface?) can be passed
down the call tree as a tunnel parameter, or the mechanism for pinning the tree can be
used to expose an equivalent to the ancestor axis. This is discussed further in a later
section.

5. Generating the digest file

Let's look at another stage of the transpilation process: generation of the digest file. In
the existing transpiler, this reads the entire collection of 2100 XML files produced by the
Java parser, and constructs a single XML file (the digest) containing summary details of
the classes, interfaces, and methods. Here is a short extract (the real thing is about 71,000
lines):

<digest>
 <module package="net.sf.saxon.tree">
 <class name="NamespaceNode">
 <implements name="net.sf.saxon.om.NodeInfo"/>
 <constructor params="net.sf.saxon.om.NodeInfo| ↩
net.sf.saxon.om.NamespaceBinding|int"/>

Generating the digest file

55

 <field name="element" type="net.sf.saxon.om.NodeInfo"/>
 <field name="nsBinding" ↩
type="net.sf.saxon.om.NamespaceBinding"/>
 <field name="position" type="int"/>
 <field name="fingerprint" type="int"/>
 <method name="getTreeInfo" ↩
returns="net.sf.saxon.om.TreeInfo"/>
 <method name="head" returns="net.sf.saxon.om.NodeInfo" ↩
csReturns="net.sf.saxon.om.Item"/>
 <method name="getNodeKind" returns="int"/>
 <method name="equals" returns="boolean" ↩
sig="java.lang.Object" params="java.lang.Object"/>
 <method name="hashCode" returns="int"/>
 <method name="getSystemId" returns="java.lang.String"/>
 <method name="getPublicId" returns="java.lang.String"/>
 <method name="getBaseURI" returns="java.lang.String"/>
 <method name="getLineNumber" returns="int"/>
 <method name="getColumnNumber" returns="int"/>
 ...

The JSON equivalent, which we will be generating here, mirrors this closely:

 { "digest":[
 {
 "package": "net.sf.saxon.tree",
 "class": [
 { "name":"NamespaceNode" },
 { "implements":{ "name":"net.sf.saxon.om.NodeInfo" } },
 { "constructor":{ "params":"net.sf.saxon.om.NodeInfo| ↩
net.sf.saxon.om.NamespaceBinding|int" } },
 { "field":{ "name":"element", ↩
"type":"net.sf.saxon.om.NodeInfo" } },
 { "field":{ "name":"nsBinding", ↩
"type":"net.sf.saxon.om.NamespaceBinding" } },
 { "field":{ "name":"position", "type":"int" } },
 { "field":{ "name":"fingerprint", "type":"int" } },
 { "method":{ "name":"getTreeInfo", ↩
"returns":"net.sf.saxon.om.TreeInfo" } },
 { "method":{ "name":"head", ↩
"returns":"net.sf.saxon.om.NodeInfo", ↩
"csReturns":"net.sf.saxon.om.Item" } },
 { "method":{ "name":"getNodeKind", "returns":"int" } },
 { "method":{ "name":"equals", "returns":"boolean", ↩
"sig":"java.lang.Object", "params":"java.lang.Object" } },
 { "method":{ "name":"hashCode", "returns":"int" } },
 { "method":{ "name":"getSystemId", ↩
"returns":"java.lang.String" } },
 { "method":{ "name":"getPublicId", ↩
"returns":"java.lang.String" } },
 { "method":{ "name":"getBaseURI", ↩
"returns":"java.lang.String" } },
 { "method":{ "name":"getLineNumber", "returns":"int" } },
 { "method":{ "name":"getColumnNumber", ↩

Generating the digest file

56

"returns":"int" } },

Actually, what I'm showing here is the result of converting the XML digest to JSON using
the 4.0 element-to-map() function. In this stage of the case study, we're looking at the
code needed to generate this structure, but I didn't actually complete the exercise, partly
because the code uses features not yet implemented in Saxon.

The stylesheeet is fairly small (just 180 lines). It uses a mode with on-no-match="fail"
so there has to be an explicit template rule for every element of interest. The top two
templates (in the XML version) are:

 <xsl:template name="xsl:initial-template">
 <digest>
 <xsl:apply-templates select="collection($xmlDir ||
 '?recurse=yes;select=*.xml')"/>
 </digest>
 </xsl:template>

 <xsl:template match="root">
 <module package="{f:qualifiedName(packageDeclaration/name)}">
 <xsl:apply-templates select="types/type"/>
 </module>
 </xsl:template>

So the entry-point template reads all the XML files in a directory whose name is supplied
as a parameter, and invokes a template to process each file independently; this selects the
only elements of interest, which are the type elements (a type being typically a class or
interface). These two templates translate in the JSON version to:

 <xsl:template name="xsl:initial-template">
 <xsl:map>
 <xsl:map-entry key="'digest'">
 <xsl:array>
 <xsl:for-each select="(collection($jsonDir ||
 '?recurse=yes;select=*.json') ! pin(.)) ? ↩
*">
 <xsl:array-member>
 <xsl:map>
 <xsl:apply-templates select="."/>
 </xsl:map>
 </xsl:array-member>
 </xsl:for-each>
 </xsl:array>
 </xsl:map-entry>
 </xsl:map>
 </xsl:template>

 <xsl:template match="?root"> <!-- match=".[label(.)?key = 'root']" ↩
-->
 <xsl:map-entry key="'module'">
 <xsl:map>

Generating the digest file

57

 <xsl:map-entry key="'_package'"
 select="f:qualifiedName(?packageDeclaration? ↩
name)"/>
 <xsl:apply-templates select="?types?type"/>
 </xsl:map>
 </xsl:map-entry>
 </xsl:template>

Observations:

◆ The JSON version of the digest is a singleton map, with key "digest", whose value is
an array of maps. Constructing this top-level map-of-array-of-maps is somewhat verbose,
but straightforward enough.

◆ The first template rule applies the pin() function to each of the 2100 XML documents
in the collection, before applying templates to the result. I'll have more to say about the
pin() function in due course, what it does is to create a copy of the tree of maps and
arrays, with each item in the tree augmented with a label carrying information about
where it was found in the tree.

It's possible we may decide that when xsl:apply-templates selects a map or array,
it should be pinned automatically. That decision hasn't been made yet.

◆ The second template rule is shown with two alternative forms of the match pattern.
The commented-out version works in Saxon today: it tests whether the label of the
item (created when it was pinned) has a key property of root. The second form is a
proposed contraction: match="?root" is proposed syntax equivalent to the first form.
This would only work if the tree has been pinned, because without this, a value in the
tree knows nothing about its associated key. (Contrast this with the XDM model for XML,
where an element name is an intrinsic property of an element node.)

This stylesheet processes the input JSON by applying templates to the values found in its
arrays and maps: the default processing is <xsl:apply-templates select="?*"/>.
This selects the values, not the key-value pairs. I have experimented with selecting key
value pairs instead, using <xsl:apply-templates select="map:entries(.)"/>,
and there are some cases where this is a good solution, but I have usually found it causes
confusion. If the values are labelled with their associated key (by pinning the tree before we
start), then it turns out not to be necessary.

For many of the functions and templates in the stylesheet, the translation is fairly direct. For
example the XML version has a function to test whether a Java interface has an annotation
marking it as a functional interface 3:

 <xsl:function name="f:isDelegate" as="xs:boolean">
 <xsl:param name="interfaceDecl" as="element()"/>
 <xsl:choose>
 <xsl:when test="$interfaceDecl/annotations/
 annotation/name/@identifier='CSharpDelegate'">
 <xsl:sequence select="$interfaceDecl/annotations/
 annotation[name/@identifier='CSharpDelegate']/
 memberValue/@value = 'true'"/>

3In the Java source code, we use the annotation @CSharpDelegate to mark interfaces that should be transpiled to C#
delegates. The JavaParser faithfully copies this annotation into the XML syntax tree, and the transpiler picks it up from there.

Generating the digest file

58

 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="exists($interfaceDecl
 [@nodeType='ClassOrInterfaceDeclaration']
 [@isInterface='true']
 [annotations/annotation/name/ ↩
@identifier='FunctionalInterface']
 [count(members/member)=1])"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:function>

In the JSON version this becomes:

 <xsl:function name="f:isDelegate" as="xs:boolean">
 <xsl:param name="interfaceDecl" as="item()"/>
 <xsl:choose>
 <xsl:when test="$interfaceDecl?annotations
 ?*?name?_identifier='CSharpDelegate'">
 <xsl:sequence select="$interfaceDecl?annotations
 ?*[?name?_identifier='CSharpDelegate']
 ?memberValue?_value = 'true'"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="exists($interfaceDecl
 [?_nodeType='ClassOrInterfaceDeclaration']
 [?_isInterface='true']
 [?annotations?*?name? ↩
_identifier='FunctionalInterface']
 [count(?members?*)=1])"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:function>

which, although it might appear a little cryptic at first sight, is actually a very direct
translation.

Incidentally, both versions could take advantage of the new xsl:if instruction in XSLT 4.0:
the JSON version could be written:

<xsl:function name="f:isDelegate" as="xs:boolean">
 <xsl:param name="interfaceDecl" as="item()"/>
 <xsl:if test="$interfaceDecl?annotations
 ?*?name?_identifier='CSharpDelegate'"
 then="$interfaceDecl?annotations
 ?*[?name?_identifier='CSharpDelegate']
 ?memberValue?_value = 'true'"
 else="exists($interfaceDecl
 [?_nodeType='ClassOrInterfaceDeclaration']
 [?_isInterface='true']

Generating the digest file

59

 [?annotations?*?name? ↩
_identifier='FunctionalInterface']
 [count(?members?*)=1])"/>
 </xsl:function>

This stylesheet outputs JSON, and it is therefore greatly concerned with constructing maps
and arrays. We've already seen in the top-level template that this can be rather verbose.
There's a lot of this kind of code:

 <xsl:map>
 <xsl:map-entry key="'name'" select="f:degenerify(?name? ↩
_identifier)"/>
 <xsl:if test="f:isDelegate(.)">
 <xsl:map-entry key="'delegate'" select="1"/>
 </xsl:if>
 ...
 <xsl:map-entry key="'members'">
 <xsl:array>
 <xsl:for-each select="?members?*[? ↩
_nodeType='MethodDeclaration']">
 <xsl:array-member>
 <xsl:apply-templates select="."/>
 </xsl:array-member>
 </xsl:for-each>
 </xsl:array>
 </xsl:map-entry>
 </xsl:map>

and it would be nice to reduce the verbosity if we can. One way of doing this is to do more
of the work in XPath expressions rather than XSLT instructions. A couple of new XSLT
features are designed to facilitate this: an xsl:select instruction, which evaluates an
XPath expression held in its content, and an apply-templates function, which does the
same thing as the xsl:apply-templates instruction. With these enhancements, we can
almost replace the above code by:

 <xsl:select> {
 'name' : f:degenerify(?name?_identifier),
 'delegate' : xs:integer(f:isDelegate(.)),
 ...
 'members' : array:build(?members?*[? ↩
_nodeType='MethodDeclaration'],
 apply-templates#1)
 } </xsl:select>

The only ingredient missing here is that map constructors have no way to generate a map
entry (such as 'delegate') conditionally. We're working on that one.

Another attempt to make map construction more concise is a new xsl:record instruction,
allowing something like:

Generating the digest file

60

 <xsl:record
 name = "f:degenerify(?name?_identifier)"
 delegate = "xs:integer(f:isDelegate(.))"
 ...
 members = "array:build(?members?*[?_nodeType='MethodDeclaration'],
 apply-templates#1)"/>

Again, it offers no way to generate a map entry conditionally.

6. Refining the digest

The final part of the transpiler to be examined in this case study is the stylesheet that
refines the digest. This is concerned with adding attributes to the information about classes
and methods: the most obvious example is to annotate C# methods as virtual if they are
overridden in a subclass, or as override if they are overriding a method in a superclass.
Another task is to change the return type of a method if it overrides a superclass method
with a wider return type: when we wrote the transpiler, C# did not allow covariant return
types, and it still imposes restrictions that are more severe than those in Java (for example
for methods defined in interfaces).

By its nature, this stylesheet is often following links from the usage of a class to the
definition of the class, and this is achieved using an XSLT key definition:

 <xsl:key name="classKey"
 match="class | interface"
 use="ancestor::module/@package || '.' ||
 string-join(ancestor-or-self::*
 [self::class|self::interface]/@name, ↩
'.')"/>

This indexes every class or interface by a key that represents the full hierarchic name of the
class or interface. For example, given this structure:

 <module package="net.sf.saxon.tree.iter">
 <class name="EmptyIterator">
 <implements name="net.sf.saxon.om.SequenceIterator"/>
 <implements ↩
name="net.sf.saxon.tree.iter.ReversibleIterator"/>
 ...
 <field name="theInstance"
 type="net.sf.saxon.tree.iter.EmptyIterator"
 static="1"/>
 <method name="getInstance"
 returns="net.sf.saxon.tree.iter.EmptyIterator"
 static="1"/>
 <method name="nextAtomizedValue"
 returns="net.sf.saxon.om.AtomicSequence"/>
 ...
 <class name="OfNodes">

Refining the digest

61

 <extends name="net.sf.saxon.tree.iter.EmptyIterator"/>
 <implements name="net.sf.saxon.tree.iter.AxisIterator"/>
 ...

it indexes the class OfNodes with the key
net.sf.saxon.tree.iter.EmptyIterator.OfNodes.

XSLT keys work only with nodes, not with maps and arrays, and we have no intention of
changing that. Instead, the preferred approach is to construct a map that can act as an
index. Often it will be appropriate for this map to be held in a global variable. How should
we construct it?

In simple cases, constructing a map is easy. For example the equivalent in XPath
4.0 of a key defined with match="employee" use="@ssn" is a map built using
map:build(.??employee, fn{@ssn}) 4. This case is more difficult, because with a
tree of maps and arrays built from JSON, there is no ancestor axis to play with.

I experimented with several ways of constructing the index as a map. The first approach
uses recursive descent template rules with tunnel parameters:

 <xsl:mode name="build-index" on-no-match="deep-skip"/>
 <xsl:output method="json" indent="yes"/>

 <xsl:template match="record(package, *)"
 mode="build-index" priority="2">
 <xsl:message>Processing package {?package}</xsl:message>
 <xsl:next-match>
 <xsl:with-param name="full-name"
 select="?package" tunnel="yes"/>
 </xsl:next-match>
 </xsl:template>

 <xsl:template match="record(class, *)" mode="build-index">
 <xsl:param name="full-name" tunnel="yes"/>
 <xsl:variable name="full-class-name"
 select="`{$full-name}.{?class?*?name}`"/>
 <xsl:message>Processing class {$full-class-name}</ ↩
xsl:message>
 <xsl:map-entry key="$full-class-name"
 select="{'class': ?class}"/>
 <xsl:apply-templates select="?class?*[. instance of ↩
(record(class, *)
 | ↩
record(interface, *))]"
 mode="#current">
 <xsl:with-param name="full-name"
 select="$full-class-name"
 tunnel="yes"/>
 </xsl:apply-templates>
 </xsl:template>

4map:build, with two arguments, returns a map in which each key-value pair contains a value from the sequence supplied
in the first argument, with a corresponding key calculated using the function supplied in the second argument. The XPath 4.0
expression fn{@ssn} represents a function that returns the value of the @ssn attribute of the node supplied as the implicit
function argument: in XPath 3.1 this would be written function($node){$node/@ssn}.

Refining the digest

62

 <xsl:template match="record(interface, *)" mode="build-index">
 <xsl:param name="full-name" tunnel="yes"/>
 <xsl:variable name="full-class-name"
 select="`{$full-name}.{?interface?*?name}`"/>
 <xsl:message>Processing interface {$full-class-name}</ ↩
xsl:message>
 <xsl:map-entry key="$full-class-name"
 select="{'interface': ?interface}"/>
 <xsl:apply-templates select="?class?*[. instance of ↩
(record(class, *)
 | ↩
record(interface, *))]"
 mode="#current">
 <xsl:with-param name="full-name"
 select="$full-class-name"
 tunnel="yes"/>
 </xsl:apply-templates>
 </xsl:template>

 <xsl:template name="xsl:initial-template">
 <xsl:map>
 <xsl:apply-templates select="?digest?*"
 mode="build-index"/>
 </xsl:map>
 </xsl:template>

The tunnel parameter full-name is used to build up the concatenated name as we
descend the hierarchy; when we get to the leaf nodes, we can create a map entry using
this name, so there is no need to access ancestor information. This works, but it's a lot of
work to replicate a fairly simple xsl:key declaration. The xsl:message instructions are
there as a reminder of how difficult I found it to get this right. The need for separate paths to
handle classes and interfaces is especially irritating. They could probably be combined, but
I found it was getting too complicated.

Note the use of the idiom match="record(class, *). This matches any map that has
an entry with the key "class". A single key is often enough to identify the relevant maps
uniquely.

The subtlety is that a top-level class is represented in the digest by a map that has
both a package key and a class key, and both contribute to the full name of the
class. By giving the match="record(package, *)" template rule higher priority, and
then using xsl:next-match, we ensure that both names are added to the hierarchic
name, in the right order. An inner class will have an entry that only matches the
match="record(class, *)" template rule.

My second attempt to build the index also used recursive-descent template processing, but
instead of passing tunnel parameters down with each call, it relied on the ability in a pinned
tree of maps and arrays to access ancestor information. This worked, but it demonstrated
no benefits over the first approach.

My third attempt used the map:build function, again processing a pinned tree of maps
and arrays to make ancestor information. Here it is:

Refining the digest

63

 <xsl:function name="f:fullClassName">
 <xsl:param name="c" as="(record(class, *)|record(interface, ↩
*))"/>
 <xsl:variable name="upper"
 select="label($c)?parent ! label(.)?parent"/>
 <xsl:variable name="prefix" select="
 if ($c instance of record(package, *))
 then $c?package
 else f:fullClassName($upper)"/>
 <xsl:sequence select="$prefix || '.' || $c? ↩
('class','interface')?*?name"/>
 </xsl:function>

 <xsl:template name="xsl:initial-template">
 <xsl:sequence select="
 map:build(
 pin(?digest)??~(record(class, *)|record(interface, *)),
 f:fullClassName#1)
 "/>
 </xsl:template>

I've cheated a little here, because it uses constructs that aren't yet implemented in Saxon,
so I had to use workarounds to make it work. But it's only using features that are defined in
the status-quo 4.0 specification.

Some observations:

◆ The construct ?? is a deep lookup operator: it does the same for maps and arrays as //
does for node trees. It can be qualified by a type, so ??~record(method) searches
the entire tree for values matching the class record(method). In this case we have
supplied a choice type: ??~(A|B) matches items that are instances of either A or B.

◆We have called pin() on the tree so that each value is labelled; the label includes
information about the containing (parent) map or array.

◆ The first argument to map:build selects the items to be indexed. The second computes
a key value for each one. This is done by calling a user-written recursive function
f:fullClassName.

◆ In this function, $upper navigates to the grandparent of a value. That's because the
structure uses arrays of maps: to get from an inner class to its containing class, we need
to go up two levels. The local name of the selected class or interface is then prefixed
either with the package name (if it is a top-level class or interface), or with the full name
of the containing (grandparent) class, computed by a recursive call, if it represents an
inner class.

Which is preferable? Opinions will probably differ. Neither is as concise as I would like,
but is the requirement frequent enough to justify custom syntax for the equivalent of an
ancestor axis? With the current (very early) implementation in Saxon, both take around the
same time: 500ms to 700ms to index a 5Mb digest file.

Refining the digest

64

7. Conclusions

What have we learned from this case study? Quite a lot. We've learned about things that
work well, we've learned about how to take best advantage of some of the new constructs
in the language, we've generated ideas for further refinements to the language specs
(some of which were implemented during the course of the study), and we've learned about
areas where there is still room for further improvements.

Here's a list of some of the more important observations.

◆When converting XML to JSON, we discovered the importance of achieving a mapping
that i consistent not only over a large collection of instance documents, but that is also
consistent over time despite the fact that tomorrow's instance documents might not have
exactly the same structure as today's. We redesigned the element-to-map function to
meet this requirement.

◆ The plan constructed by the element-to-map-plan function seems to work well on
the samples we needed to convert, given a set of input documents that is sufficiently
large and representative.

◆We found that it's easiest to define template rules for maps if they can be written to
depend only on the internal structure of the map, and not on the key used to identify
the map within a larger structure. Whether this is possible depends on the design of
the JSON to be tranformed. Writing match patterns of the form match="record(real,
complex) that recognise the type of a map from the names of its fields is often a
good approach. Sometimes one would also like to match on the values of a field, for
example match="record(type, *)[?type="xxx']. It would be nice to have syntax
that's less clumsy for this. There's a temptation for users to reduce it to match=".[?
type="xxx'] but this seems to lack clarity.

◆ XSLT often processes selected child elements or attributes by inline code within a
template, and then processes the remainder using a construct such as <xsl:apply-
templates select="* except (X, Y, Z)"/> where X, Y, Z are the children that
have been given special treatment. The except operator works only on nodes, and the
lookup operator ? currently provides no similar capability to select all properties except
some specifically-named ones. One option is to provide lower-priority template rules that
match X, Y, and Z and do nothing with them.

◆ For this and other reasons, it is often useful to match values appearing in a tree of maps
and arrays by their associated key. The syntax match="?keyval" has been proposed
for this. The semantics, though, depend on values being labelled with their associated
key, and the full complexities of this (and the usability problems that it might introduce)
are not yet fully understood.

◆ It would be useful for the union, except, and intersect operators in patterns to
apply to all kinds of pattern, not only patterns that match nodes. (The semantics of these
operators in a pattern have already diverged in detail from their XPath semantics.)

◆ It would be nice to have some equivalent to match="/" to match the root of a tree.

◆ I had been concerned about how template rules should process arrays. The case study
revealed no problems in this area. In most cases arrays are not processed by matching
them in a template rule, but by iterating over the array in the template rule for its
container.

◆ The current syntax for constructing maps and arrays in XSLT is rather verbose, and
could be improved for many common use cases. Sometimes the right answer is to do it

Conclusions

65

in XPath: the introduction of the fn:apply-templates function and the xsl:select
instruction both facilitate that. In other cases the new xsl:record instruction helps. An
equivalent to array:build as an XSLT instruction has also been mooted.

◆ Neither xsl:record nor XPath map constructors make it easy to include an entry in the
constructed map conditionally.

◆ Pinned maps and arrays make access to containing (ancestor) arrays and maps
possible, but the current syntax for doing so is very clumsy.

◆We've added quite a lot of functionality to introduce modifiers for lookup expressions
(such as $x?pair::y). But this case study didn't identify any situations where they
proved useful.

◆When the JSON structure uses arrays of maps (which is quite common), paths such
as ?x?*?y?*?z start to appear frequently (and are very hard to debug when they select
nothing). Could this be improved?

Bibliography

[Delpratt and Lockett 2017] O'Neil Delpratt and Debbie Lockett. Distributing XSLT
Processing between Client and Server. Presented at XML London 2017, June 10 - 11th,
2017. DOI: 10.14337/XMLLondon17.Lockett01. Available at https://xmllondon.com/
2017/xmllondon-2017-proceedings.pdf

[Kay 2016] Michael Kay. Transforming JSON using XSLT 3.0. XML Prague 2016. http://
archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf

[Kay 2021] Michael Kay. <transpile from="Java" to="C#" via="XML" with="XSLT"/>. Markup
UK, London, 2021 https://markupuk.org/2021/pdf/Markup-UK-2021-proceedings.pdf

[Kay 2022] Michael Kay. XSLT Extensions for JSON Processing. Balisage: The Markup
Conference 2022, Washington, DC, August 1 - 5, 2022 https://doi.org/10.4242/
BalisageVol27.Kay01

[Kay 2023] Michael Kay. Schema-Aware Conversion of XML to JSON. Presented at
Balisage: The Markup Conference 2023, Washington, DC, July 31 - August 4, 2023.
https://doi.org/10.4242/BalisageVol28.Kay01

Conclusions

66

https://xmllondon.com/2017/xmllondon-2017-proceedings.pdf
https://xmllondon.com/2017/xmllondon-2017-proceedings.pdf
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
https://markupuk.org/2021/pdf/Markup-UK-2021-proceedings.pdf
https://doi.org/10.4242/BalisageVol27.Kay01
https://doi.org/10.4242/BalisageVol27.Kay01
https://doi.org/10.4242/BalisageVol28.Kay01

Schema Test Suite
Building a Stronger Foundation for Schema Validation
Rebecca Bamford, Bloomsbury Publishing Plc

Francis Denton, Bloomsbury Publishing Plc

Astrea Kumaradas, Bloomsbury Publishing Plc

This paper examines the need for stronger foundations in XML schema design,
particularly when working with complex content models such as DocBook, TEI, or VRA1.
These models are based on element and attribute relationships, requiring validation
scenarios that enforce structural and semantic accuracy. While significant effort goes
into developing schemas to represent these complex models, their accuracy in capturing
data requirements is often assumed.

To address this, the Content Architecture team at Bloomsbury Publishing have
introduced a unit test-driven methodology for validating the structural integrity of
Bloomsbury XML schemas. Our initial implementation of this schema test suite has
proven effective in supporting schema modifications by providing reliable feedback to
verify the reliability of our schemas.

1. Introduction

Bloomsbury Publishing’s Content Strategy fundamentally centres on the question: How do
we leverage the value of content most effectively and efficiently? The strategy becomes
even more crucial when working with complex content models such as DocBook, TEI, and
VRA, with their intricate relationships between elements, attributes, and content structures.

"Fail fast, fail often."

Our approach, which encourages early and frequent testing before integration into the
deployed version of a schema, is a philosophy that helps identify issues early in the
workflow. Smoking out issues early on is significantly less disruptive and complex to resolve
than uncovering problems at later stages in our workflows. While this approach will likely
increase the number of failures reported and might seem counterintuitive, each failed test
provides valuable feedback, enabling us to refine the schemas and improve publishing
processes.

"Write tests for everything."

Although we had existing frameworks in place to validate the integrity of our extensive
Schematron schema, we identified a gap in the lack of structured testing for the RELAX
NG and XML schemas that we work with. To address this, we decided to develop a test
suite to verify and validate our customised schemas, ensuring that our content validation

1Visual Resources Association, a metadata schema.

68

standards are met now and for any future schema modifications, for every stage of our
content workflow.

1.1. Structural Validation vs. Schematron

In XML validation, there are two primary approaches to ensure the accuracy and integrity of
content:

1. Structural validation

2. Schematron

Structural validation (e.g., RELAX NG, XSD) handles the overall structure of an XML
document, ensuring that elements appear in the correct order, adhere to the proper
data types, and follow hierarchical relationships between elements. For instance, when
a bibliography element is present, the following-sibling must be as per the
following: expected the element end-tag or element "bibliography", "glossary", "index" or
"toc".

On the other hand, Schematron enforces a more granular, rule-based validation that can
be precisely tailored to business requirements. For instance, for accessibility purposes,
when figure elements are present, alt elements must be included as a child of the
mediaobject element, or the file will raise error messages.

Example 1. DocBook Schematron Invalid Markup

<figure @xml:id="b-figure1">
 <info>
 <title>Image</title>
 </info>
 <mediaobject>
 <imageobject>
 <imagedata fileref="images/f001.jpg" format="image/jpeg"/>
 </imageobject>
 </mediaobject>
 </figure>

Validation Error: figure with @fileref value of "images/f001.jpg" must contain correct
markup for descriptive text to ensure accessibility. Check element with id "b-figure1".

Both structural validation and Schematron serve different but complementary roles;
combining them ensures that the XML content adheres to a required structural format and
meets the customised requirements. This multi-validation approach significantly improves
the reliability and validity of content throughout its lifecycle, ensuring that the high standards
required in publishing are met. Additionally, we use the parsing results from industry
standard validators for each flavour of schema, where any such errors should be reported
by them as per usual.

1.2. Schema Languages

There are many different XML schema languages, and in the publishing industry, complex
content models like DocBook and TEI are represented through schemas, each addressing
specific content requirements:

◆ DocBook: now defined using the RELAX NG schema language, offers cleaner, more
precise, and more extensible content models, making customised versions significantly
easier to create than its previous DTD-based schema. [D5TDG]

Structural Validation vs. Schematron

69

◆ TEI: The Text Encoding Initiative is an XML application designed for the markup of
classic literature, widely used by libraries, museums, publishers, and individual scholars
to represent all textual material for online research and teaching. The guidelines define
and document a markup language for representing the structural, renditional, and
conceptual features of texts. [TEI]

◆ VRA (Visual Resources Association) Core: An XML-compatible metadata schema for
organising works of art, namely visual resources.

For specific publishing workflows, we implement a customisation layer to our structural
schemas by extending core schemas such as the DocBook Publishers schema [DBR].
This customisation is achieved with the use of an include statement in our customised
schemas, and it allows us to build on the core standard structures whilst incorporating
specific requirements and constraints that align with our publishing requirements [CDB].
Over time, the customised schemas have evolved to address the increasing complexity
of the content we process; therefore, our commitment to ensuring comprehensive and
accurate validation throughout the content lifecycle is vital.

2. Schema Test Suite

As previously identified, working with XML documents with complex content models
involves enforcing structural and semantic rules through schemas. However, a critical
question arises: How can we verify the validity of the schemas to implement these
structural requirements, especially as they grow in size and are tailored to suit business
needs? To address this gap, we have introduced a unit test-driven methodology for
validating structural schemas.

2.1. Unit Testing Methodology

A unit testing methodology was best suited for the test suite design process, as this
methodology allowed us to break down each schema element and treat it as an
independently testable unit. This granular approach ensures that specific content models
behave as expected in isolation from the schema. [UTPBQBP]

While limiting to granular, more focused tests allows for faster validation of test cases and
clearer validation reports, running the full suite provides regression coverage, ensuring
modifications or additions do not inadvertently break existing schema functionality.

2.2. Test Cases

Test cases are created in XML format, where we expect one invalid and one valid XML file
per defined structure. A unique aspect of this methodology is that conventionally valid and
invalid files will pass the validation process; the success of the validation process lies in the
schema's ability to enforce its structural and semantic rules effectively.

2.2.1. Folder Directory Hierarchy

We organise the test cases using a structured directory hierarchy to ensure consistency
and clarity during testing. This organisation supports the efficient targeting of individual
defined structures, for example, when testing the role attribute for abstract elements in
our DocBook schema, the test case components are organised as follows:

Example 2. Tree diagram that breaks down the file directory structure of test cases

+---bloomsbury-mods-tests
¦ +---condition-attribute

Schema Test Suite

70

¦ ¦ fail.xml
¦ ¦ pass.xml
¦ ¦
¦ +---outputformat-attribute
¦ ¦ fail.xml
¦ ¦ pass.xml
¦ ¦
¦ +---relation-attribute
¦ ¦ fail.xml
¦ ¦ pass.xml
¦ ¦
¦ +---role-attribute
¦ ¦ +---abstract
¦ ¦ ¦ fail.xml
¦ ¦ ¦ pass.xml
¦ ¦ ¦
¦ ¦ +---address
¦ ¦ ¦ fail.xml
¦ ¦ ¦ pass.xml
¦ ¦ ¦

Example 3. Abstract Defined Structure

db.abstract.role.attribute =
 attribute role { "blurb" | "authorAbstract" | "extract" }
 db.abstract.attlist =
 db.abstract.role.attribute
 & db.common.attributes
 & db.common.linking.attributes

Each test case is designed to validate against a specific defined structure, so in this
instance, not only does it test a list of attributes that an abstract element can have, but
the test also validates that the role attribute of abstract elements conforms to one of the
following allowed values:

◆ blurb

◆ authorAbstract

◆ extract

Although the test cases can be individually targeted during testing, which should
significantly reduce the processing time, they are also designed to be valid when run
against the entire test suite. Executing the whole suite ensures comprehensive regression
testing, flagging if new modifications to the schema have inadvertently broken existing
functionality.

2.2.2. Templates

Test case templates are provided for consistency and accuracy for each schema, thereby
reducing the likelihood of user error and simplifying test case creation. Although test cases
are created manually, with the aid of test case templates, the idea of automation for future
development is something to explore going forward. Automating test case creation will help
accelerate and improve the accuracy of the validation process to support the ever-evolving
schemas, while making the process more accessible for people with different technical
backgrounds.

Test Cases

71

2.2.3. Passing XML

Valid XML test cases are expected to pass schema validation since they contain structurally
and semantically correct content.

For instance, the following DocBook XML file should conform to the defined structures
contained in the schema being validated, where all the role attribute values for the
biblioset element are permitted values:

<book xmlns="http://docbook.org/ns/docbook" xml:id="b-book" ↩
role="fullText">
 <info>
 <title>biblioset-role-attribute-tests</title>
 <biblioset role="publisher"/>
 <biblioset role="isbns"/>
 <biblioset role="series"/>
 <biblioset role="companionWebsite"/>
 </info>
 </book>

2.2.4. Failing XML

Invalid XML test cases are intentionally designed to violate defined structures. They are
successful when the suite correctly identifies them as invalid, demonstrating that the
schema properly enforces its intended constraints.

For example, the following DocBook XML file will be flagged as a pass by the test suite, as
it does not adhere to the structures defined within the schema:

<book xmlns="http://docbook.org/ns/docbook" xml:id="b-book" ↩
role="fullText">
 <info>
 <title>biblioset-role-attribute-tests</title>
 <biblioset role="isbn"/>
 </info>
 </book>

2.3. Implementation and Execution

2.3.1. Tools and Libraries

BaseX: The processor for the test suite, chosen for its familiarity. Versions prior to 8.6.7
lack the required functions, so more up-to-date versions should be used.
XQuery: The main language used to build the test suite and incorporate BaseX’s built-in
XQuery functions.
XSLT: Primarily used to transform the test results into reports.

2.3.2. Execution Logic

Once test cases have been defined, the validation suite can be used with any RELAX NG
or XSD schema. The primary validation process is managed through XQuery functions,
which allow users to address the following:

Implementation and Execution

72

Example 4. Map schemas to their corresponding test cases

declare variable $sch:schemas as map(*) := map {
 "bloomsbury-mods": map {
 "schema": "..\..\content-models\DocBook\schema\bloomsbury- ↩
mods.rnc",
 "test-cases": "bloomsbury-mods-tests"
 },
 "vra-strict-bloomsbury": map {
 "schema": "..\..\content-models\VRA\schema\vra-strict- ↩
bloomsbury.xsd",
 "test-cases": "vra-strict-bloomsbury-tests"
 },
 "bmyTEI-tests": map {
 "schema": "..\..\content-models\TEI\schema\bmyTEI.rnc",
 "test-cases": "bmyTEI-tests"
 }
};

Example 5. Target a specific schema during the test suite validation process

declare function sch:options($userInput) {
 let $schema := $sch:schemas($userInput)
 return
 $schema
};

Additionally, BaseX’s built-in XQuery validation functions are used to assess whether XML
documents conform to their corresponding schemas.

Function: validate:xsd-report()

Signature:

validate:xsd-report(
 $input as item(),
 $schema as xs:string? := (),
 $options as map(*) := {}
) as element(report)

Summary:

Validates the XML $input document against a $schema and returns warnings, errors and
fatal errors as XML.

Function: validate:rng-report()

Signature:

validate:rng-report(
 $input as item(),
 $schema as xs:string,
 $compact as xs:boolean? := {}
) as element(report)

Summary:

Implementation and Execution

73

Validates the XML $input document against a $schema, using the XML or $compact
notation, and returns warnings, errors and fatal errors as XML.

2.3.3. Reporting

Test results are captured in human-readable, queryable reports, which are generated and
exported in multiple formats. Built-in BaseX reporting includes the following:

Trace logs

Immediate user reporting is provided during the suite's execution and once it is complete.
The trace() function offers logs during the validation process, which can be useful
for debugging. The function returns the directory path for all items being tested in that
execution run.

Example 6. Trace log

"Validating: C:\Resources2\xquery\schema\tests\bloomsbury-mods-tests\role-
attribute\book\book-role-attribute-fullText\fail.xml"

"Validating: C:\Resources2\xquery\schema\tests\bloomsbury-mods-tests\role-
attribute\book\book-role-attribute-fullText\pass.xml"

"Validating: C:\Resources2\xquery\schema\tests\bloomsbury-mods-tests\role-
attribute\book\book-role-attribute-pdfOnly\fail.xml"

"Validating: C:\Resources2\xquery\schema\tests\bloomsbury-mods-tests\role-
attribute\book\book-role-attribute-pdfOnly\pass.xml"

BaseX Result Window

This summarises the test results in a user-friendly manner, displaying the number of test
cases that pass and fail.

Example 7. Valid Test Cases

0 TESTS FAILED

94 TESTS PASSED

Further reporting is also provided in the scenario of a test case which fails validation. The
reports will provide the following:

1. A direct path to the XML that failed the test suite validation.

2. Overview of the result.

3. Descriptive user error messages for easy debugging.

Example 8. Invalid Test Cases

1 TESTS FAILED

93 TESTS PASSED

<sch:validation xmlns:sch="http://bloomsbury.com/schema-test">
 <sch:path>file:///C:/Resources2/xquery/schema/tests/bloomsbury- ↩
mods-tests/role-attribute/book/book-role-attribute-fullText/pass.xml</↩

Implementation and Execution

74

sch:path>
 <sch:results>***TEST FAILED***</sch:results>
 <sch:message>
 <report>
 <status>invalid</status>
 <message level="Error" line="1" column="115" ↩
url="file:///C:/Resources2/xquery/schema/tests/bloomsbury-mods-tests/ ↩
role-attribute/book/book-role-attribute-fullText/pass.xml">value of ↩
attribute "role" is invalid; must be equal to "fullText" or ↩
"pdfOnly"</message>
 </report>
 </sch:message>
</sch:validation>

<sch:validation xmlns:sch="http://bloomsbury.com/schema-test">
 <sch:path>file:///C:/Resources2/xquery/schema/tests/bloomsbury- ↩
mods-tests/role-attribute/book/book-role-attribute-fullText/fail.xml</↩
sch:path>
 <sch:results>***TEST FAILED***</sch:results>
 <sch:message>fail.xml valid against Schema which is incorrect</ ↩
sch:message>
</sch:validation>

XML Reporting

Figure 1. XML file of schema report where test cases pass validation.

Implementation and Execution

75

Figure 2. XML file of schema report where test cases fail validation.

HTML Reporting

HTML reports are generated through the transformation of XML reports via XSLT.

Figure 3. An HTML file of the schema report where test cases pass validation.

Implementation and Execution

76

Figure 4. An HTML file of the schema report where test cases fail validation.

3. Conclusion

We have established a foundation for sustainable and reliable XML schema development
by applying a structured, unit-test-based approach to schema validation, enhancing
confidence in validity. It supports long-term quality assurance, and the principles and
practices outlined here are applicable across multidisciplinary teams and domains, which
can serve as a foundation for stronger schema validation.

3.1. Continuous Development

As mentioned, future work will explore automating test case creation to improve the
validation process further. Additionally, the archiving of reports, which could aid debugging
and provide a valuable audit trail of schema modifications, will be explored.

3.2. Integration

Validation must be embedded into the schema development lifecycle to ensure and
maintain high schema quality. Our approach integrates validation at every stage by:

1. Regular regression testing - running the entire schema during each cycle, not just a
subset of the schema.

2. Continuous improvement - automating test case creation and archiving reports.

3. Expansion - incrementally developing test cases to reflect the full breadth of the
schemas, ensuring complete rule coverage.

3.3. Accessibility

The test suite has been intentionally designed for accessibility across varying technical
backgrounds, so users only require a basic understanding of XML to run and interpret
test results. Embedding validation into the wider development workflow encourages shared
ownership of schema quality and accuracy, and by lowering the technical barrier to make
schema validation more accessible, it can be adopted more broadly within multidisciplinary
teams.

Conclusion

77

Bibliography

[D5TDG] Walsh, N. and Hamilton, R.L. (2010). DocBook 5: The Definitive Guide. O’Reilly
Media, Inc

[TEI] tei-c.org. (n.d.). TEI: Text Encoding Initiative. [online] Available at: https://tei-c.org/

[VRAC] Visual Resources Association (VRA) Core. (n.d.). Available at: https://
elizabethbradshaw.wordpress.com/wp-content/uploads/2015/12/final_paper_pdf.pdf

[DBR] Docbook.org. (2025). DocBook Release. [online] Available at: https://
docbook.org/xml/5.1cr1/

[CDB] Docbook.org. (2020). Customizing DocBook. [online] Available at: https://
tdg.docbook.org/tdg/5.1/ch05#ch05-layers

[UTPBQBP] CodeFresh (n.d.). Unit Testing: Principles, Benefits & 6 Quick Best Practices.
[online] Codefresh. Available at: https://codefresh.io/learn/unit-testing/

We thank our fellow Bloomsbury Content Analysts and Content Architecture colleagues
who contributed to the testing infrastructure and schemas that made this project possible.

Accessibility

78

https://tei-c.org/
https://elizabethbradshaw.wordpress.com/wp-content/uploads/2015/12/final_paper_pdf.pdf
https://elizabethbradshaw.wordpress.com/wp-content/uploads/2015/12/final_paper_pdf.pdf
https://docbook.org/xml/5.1cr1/
https://docbook.org/xml/5.1cr1/
https://tdg.docbook.org/tdg/5.1/ch05#ch05-layers
https://tdg.docbook.org/tdg/5.1/ch05#ch05-layers
https://codefresh.io/learn/unit-testing/

Design and Performance of a Corpus Scanner
Liam Quin, Delightful Computing

People working with large collections of XML documents often need to know specific
characteristics of the documents in the collection in aggregate. For example, an attribute
value that only occurs once in a million documents might warrant investigation; an
element that was expected but that does not occur anywhere might similarly suggest a
problem. People designing transformations or style sheets might find it useful to handle
the most commonly occurring elements first.

FreqX is an XSLT-based tool that summarizes the various elements, attributes, attribute
values, and other details in a collection of XML documents. It can produce several
different report formats, including an HTML Web page, a CSV file for a spreadsheet,
and of course XML data. It has been run on collections containing tens of thousands of
documents, running into tens of gigabytes of XML.

Unfortunately, early versions of the tool used large amounts of memory—several times
more memory than the actual scanned documents occupied. This made the tool
unsuitable for one of its design goals.

Recently, the FreqX tool has been improved so that it runs more quickly and uses much
less memory.

This paper describes some of the design decisions that were made both in the creation
of FreqX and in the subsequent revision, and also the process of making the tool
support large amounts of data.

The tool is written in XSLT 3, and makes use of a number of XPath and XSLT features
introduced in that version. Some of these are discussed in the paper. FreqX is publicly
available, including full source code, with original development funded by Mulberry
Technologies. Suggestions for additional features, as well as reports of problems, are
welcomed: the tool is actively maintained.

The result of the improvements was a reduction in memory usage from over sixty
gigabytes to less than three gigabytes when processing the Early English Books Online
corpus of some fifty-three thousand TEI-based XML documents, and a reduction in time
from almost six hours before a crash down to between thirty and forty-five minutes with
successful output, running in both cases with Saxon 9 on a decade-old computer.

1. Introduction

FreqX is a tool that produces reports about elements and attributes found in a body or
corpus of XML documents. Some uses of FreqX have included:

◆ Researching elements that could be dropped from a new version of a vocabulary;

80

◆ Investigating whether there were values of role or class attributes that were used
frequently enough to suggest a new element to represent the concept;

◆ Investigating a large body of documents (thousands or tens of thousands) as part of
maintaining or writing transformations or other software;

◆ Producing pretty reports for conference papers or client reports (the importance of this
should not be underestimated).

This paper discusses some of the challenges that one encounter when writing such a tool,
and some of the (often arbitrary) design decisions taken.

Some of the challenges included:

◆ Supporting multiple ways to specify which documents to process;

◆ Handling documents that has parse errors in them;

◆ Running in a reasonable time;

◆ Not running out of memory;

◆ Coping with documents requiring different DTD files for the same PUBLIC identifier;

Initial FreqX development was sponsored by Mulberry Technologies. They wanted the tool
written in XSLT since that was their primary language, and since it’s also the author’s, this
was a good fit.

Subsequent development was funded by Delightful Computing, with help from Gerrit
Imsieke of Le-Tex Publishing and others.

2. Tool Requirements and Features

This section gives a brief overview of the features. Its purpose is to give the reader enough
context to follow the rest of the paper. Further features, that were introduced to overcome
limitations or problems, are discussed in later sections This paper is not intended to be an
introduction to the tool itself, but to describe development of the tool.

2.1. Easy to configure and run

It must be easier in most cases to run FreqX than to write ad hoc queries or to write
something else.

An external XML configuration file can be used, so that a run can be duplicated or refined.

FreqX can be run using a batch shell script (supplied) or from an environment such as
Oxygen XML Editor.

2.2. Convenient to provide inputs

Just as it must be easy to run and configure the tool, it must also be easy to give FreqX a
corpus of documents.

Currently, FreqX can read an XML document listing files to process, which can be in Saxon
collection format or Oxygen project format; it can explore a folder recursively; it can use
Saxon collection arguments; it may also be possible to configure it using a suitable resolver
to explore BaseX database collections, although this has not been tested.

Tool Requirements and Features

81

2.3. Produce multiple forms of report

Currently FreqX can produce HTML, CSV, and an XML format that it can also read for
combining runs. Other report formats can be added. The author has also explored a JSON
report suitable for use with various d3.js visualizations.

2.4. Combine multiple runs into a single report

As mentioned in the previous section, FreqX can read its own output. As a result it is
possible to run FreqX on multiple sets of documents, possibly with different options such as
different XML catalogue files, and produce combined reports.

2.5. Robust against parse errors

A non-well-formed or invalid document must not cause FreqX to crash. Instead, a summary
of parse errors shall be produced.

Large corpora are likely to have problems. Sometimes they are collections of different sorts
of documents, or may include intermediate formats or even a sub-folder of documents
known by its creators to be erroneous. FreqX produces a list of errors in the HTML report,
limited by default to the first fifty erroneous documents.

2.6. Extensible and Maintainable

It must be straight forward to add a new report. In addition, the XSLT should be
documented internally and readable.

This requirement is subjective, but the places to edit to add a new report are in options,
help, and report functions.

3. Implementation

An early version of FreqX used a recursive template to process one input file at a time. This
quickly ran out of memory, and was replaced with the XSLT 3 xsl:iterate instruction.
This still ran out of memory, and we shall return to this topic in a later section, but it handled
many more documents.

The first strategy was to produce an XPath map structure from each input document,
containing a list of all distinct elements found, and all attributes and all attribute values, and
then to merge the maps at each iteration.

This strategy turned out to use too much memory. A rewrite using elements instead of maps
to represent the data was faster and used less memory.

It’s entirely likely that the problem was actually not that maps were slower than elements in
Saxon 9, but that it’s easy to include a fragment of an input document in a map, and, unlike
when it’s copied into element content, the fragment is a live node in a document tree, and
hence the entire document must be kept in memory to support possible XPath navigation
away from the node. This is especially easy to do by mistake with attribute nodes.

A way to check for this can be to run a stylesheet in XSLT streaming mode, because any
template that then tries to return data from an input stream will raise an error. Nodes must
be “grounded” instead, for example, using the XPath 3 fn:copy-of() function. However,
converting a transformation to work correctly in streaming mode is generally non-trivial.

The current implementation makes an e element for each element in the input, and an at
element for each attribute seen. These are then turned into distinct values at the end of

Produce multiple forms of report

82

processing each input file, and converted into count elements that represent totals seen
so far.

The process of combining at elements repersenting the set of attribute values seen so
far turns out to be slow. It might be that a map would be faster than the current method;
profiling showed it was slow, and a workaround was to merge attribute values after every
hundred input documents, and at the end of processing:

<xsl:with-param name="attribute-values-seen"
 select="
 if ((position() ge last() - 1) or (position() mod 100) eq 99)
 then
 dc:merge-attribute-values(
 $attribute-values-seen,
 $this-data-set[local-name() = 'at']
)
 else (
 $attribute-values-seen,
 dc:merge-attribute-values(
 (),
 $this-data-set[local-name() = 'at']
)
)
 " />

The merge-attributes-seen() function makes a count element for each distinct attribute
name/value combination; there can easily be millions of these, and as the sequence of
pairs already discovered grows large, the process slows down considerably. So there
is a trade-off between extra memory for duplicated attribute/value count elements and
CPU time. Running merge-attributes-seen() only at the end of processing can use a lot of
memory, but running it for every document is slow.

Although the same consideration applies to element names and to attribute names, there
are generally many fewer of these.

4. Memory Usage and Speed

Gerrit Imsieke ran Saxon in profiling mode and discovered that, as mentioned in the
previous section, merging the list of seen attributes was very slow. Not merging them saved
a lot of time but produced wrong answers.

This is when the author started to suspect that the entire input was being kept in memory.
The Saxon uri-collection() function was being called with a stable=no parameter, which the
documentation seemed to suggest would mean the documents would not need to be kept
in memory.

It appears, based on testing, that in fact stable=no simply means that calling uri-collection()
multiple times in the same run might not always return the same set of document URIs
(filenames). It does not mean that the documents themselves are not guaranteed to be
stable, and hence does not mean the documents are not kept in memory.

In the end what worked was processing each input document in an external stylesheet,
called using the XPath 3 fn:transform() function. Since each invocation of XSLT was
separate, it seemed memory was not retained between them, and FreqX ran much faster.

Memory Usage and Speed

83

xsl:sequence select="transform(
 map {
 'stylesheet-location' : $process-file-xsl,
 'initial-template' : QName((), 'initial-template'),
 'stylesheet-params' : map {
 QName('http://www.delightfulcomputing.com/', 'freqx-control- ↩
doc') : $freqx-control-doc,
 QName('http://www.delightfulcomputing.com/', 'freqx-input- ↩
uri') : $this?name
 }
 }
)?output/*" />

Performance can to some extent be measured using the builtin profiling in Saxon; an
alternative is to transform the XSLT style sheet to add xsl:message instructions at the
start and end of each template of interest, and then to analyze timestamps on the log file.

Since XPath functions are deterministic, functions such as fn:current-time() always return
the same value within a single XSLT episode. Therefore the time for profiling must be
reported either with a Java native method call, or by using an external tool such as
the combination of ts and unbuffer from the Linux more-utils package. The ts command
adds timestamps to each line of input. However, program standard output is buffered for
efficiency and is delivered in clumps when the buffer is full. The unbuffer command can be
used to prevent that buffering and get accurate timestamps.

Timings can also be obtained by separate runs of the external stylesheet that would be
called using fn:transform(), and memory can be measured, for example on Linux or Unix
systems with /usr/bin/time (time without the path is a built-in in many shells, including bash,
that gives less information).

People running timings need to keep overall system activity in mind, as well as overall
system memory usage.

In the case of FreqX, memory rose to over sixty gigabytes on a test collection, and it
became clear it was keeping all of the documents in memory.

Changing FreqX to use fn:transform() on the result of doc($filename) did not help.

Passing $filename as a parameter to the external stylesheet did help: runtime was reduced
dramatically, as was memory usage.

A further refinement was to keep namespace URIs as integer keys into a map instead of
strings, but the additional complexity of passing that back from the external stylesheet did
not seem justified; the author may return to this in the future.

5. Parsing Errors
Saxon extends the fn:uri-collection() function to be able to descend recursively into a
directory (folder) structure and return all files found whose names match a pattern. FreqX
uses this as one of its mechanisms to obtain a lit of files to analyze. But not all input files
will always be DTD-valid, and some may not even be well-formed XML at all, regardless of
file name.

FreqX wraps each call to open a file (using the fn:doc() function) inside xsl:try and xsl:catch,
so that parse errors do not terminate processing. It then records the errors. Since there
may be a great many errors, by default only the first fifty are recorded, and are included in
an expandable summary/details section in the HTML report.

Parsing Errors

84

The most common parse error is not finding a DTD. The FreqX wrapper script takes
optional filenames for a Java catalog resolver class and an XML catalog file. However,
Saxon only supports using one such catalog file in any given run, and a large corpus might
well contain documents using different incompatible versions of a DTD identified by the
same identifier, whether SYSTEM or PUBLIC.

FreqX can be run multiple times, and the counts combined. A future version might be able
to process only the failed documents from a previous run, so that one can more easily
combine results from runs with different XML catalog files.

6. Extensibility

FreqX uses an array of maps to represent information about available reports. In the
following code listing, the dc:v() function produces a string, empty in the case of an
empty sequence. This is needed as otherwise an empty sequence in a comma-separated
sequence would be discarded, and the columns in the CSV files would not align. This is not
required for numbers, as zero values are not discarded. An alternative design might have
used an array, as these can contain empty sequences. With XSLT 4, a record type would
provide increased type safety.

<xsl:variable name="csv-makers" as="map(*)"
 select="
 (: This data structure drives the various different
 : comma-separated-value (CSV) reports.
 :)
 map {
 'elements' : map {
 'what' : function($counts) { $counts/elements/* },
 'headings' : 'Element,NS,Nocc,NDocs',
 'attributes' : function($count as element(count)) {
 (
 dc:v($count/@name),
 dc:v($count/@ns),
 xs:string($count),
 dc:v($count/@ndocs)
)
 }
 },
 'element-parents' : map {
 'what' : function($counts) { $counts/elements-parents/* },
 'headings' : 'Element,NS,Parent,Parent NS,Nocc,NDocs',
 'attributes' : function($count as element(count)) {
 (
 dc:v($count/@name),
 dc:v($count/@ns),
 dc:v($count/@parent-name),
 dc:v($count/@parent-ns),
 xs:string($count),
 dc:v($count/@ndocs)
)
 }
 },

The listing is incomplete: there are more entries in the actual XSLT file for FreqX, and of
course a new CSV report can be added by inserting a new entry into the map. Entirely new

Extensibility

85

formats, such as JSON, require a separate new template, but the hardest part is deciding
how to represent the information in the report.

The report generator will apply the attributes function to each count element in turn, receive
a sequence of strings in return, and make them into one item of the report: one comma-
separated line, for example. The function examines the attributes of count elements to
obtain information such as names, namespaces, counts.

This architecture means that the representation of final counts as count elements can
be changed with only moderate effort, and the representation of observations is entirely
self-contained in the document scanner. As a result it would be possible to experiment
again with maps instead of elements, for example.

7. Future Work

Although FreqX is much faster than it used to be, it could probably be faster.

Using fn:transform() might let multiple XML catalog files be used. If not, the author has
written an XSLT-based DTD parser that could possibly be integrated and used (at the
expense of speed) where needed. It is not, at the time of writing this paper, possibly
to supply a catalog resolver to the XPath fn:doc() function, unfortunately. FreqX does,
however support combining results from a previous run with a different XML catalogue file
in use, which can mitigate this problem.

Additional output formats and additional visualizations may be helpful. A JSON report is in
the works, along with a treemap visualization based on d3.js.

8. Conclusion

Using fn:transform() on each input file helped to control memory usage, and proved more
effective than several other strategies tried. The input filename is passed to the external
template, not the parsed tree.

FreqX provides a useful overview of a corpus, and now runs in a reasonable time.

A. Samples

This section includes some screenshots from an HTML report produced by FreqX to give
an idea of the results. The report is interactive, so some of the screenshots show the result
of a user clicking on (activating) an element or attribute name.

Future Work

86

Figure A.1. Report Summary

The Configuration section is collapsed by default, but is expended here to show the
options.

Figure A.2. Element Frequency

This report has one line for each element name seen, sorted by frequency across all input
documents. The report starts (after configuration and errors) with top-level elements seen,
partly because any surprises here need to be attended to forthwith. This report was run on
a single fifty-megabyte XML document.

Samples

87

Figure A.3. Element Details

In this figure the user has clicked on the fr (footnote reference) element. It has expanded to
show fr was found in one document (not surprising as only one document was analyzed in
this run), that it occurred inside p and q (quote) elements, and that 9641 of the fr elements
had an fr attribute. In the dictionary an fr element without a to attribute usually represents
an error.

Samples

88

Figure A.4. Attribute Values

The part of the report showing attributes is not included in this paper because it is similar to
the part showing elements. This figure shows the final report from FreqX, the distinct values
of attributes. The entry for xml:lang has been expanded.

Samples

89

Surfing the web with XProc
Norm Tovey-Walsh

XProc 3.1 comes with many great features for surfing the web. The p:document
instruction will load XML, HTML, or JSON documents. The p:http-request step
allows a pipeline author to interact with web services. It supports many HTTP methods,
query parameters, content negotiation, and single and multipart request and response
bodies.

But what about web applications? Web pages that rely on client-side processing, with
XSLT using SaxonJS, for example, or just plain old Javascript, present a special
challenge. What can we do about that?

1. Introduction

Back in January, on the xproc-dev mailing list, Andy Carver asked about
[https://lists.w3.org/Archives/Public/xproc-dev/2025Jan/0063.html] “grabbing web pages”. In
principle, this is easy. XProc 3.1, like the web itself, supports an extensible set of document
types identified by content type. All XProc implementations support XML, HTML, JSON,
text, and binary types. Implementors may support additional content types; XML Calabash
supports YAML and a variety of RDF content types, for example.

This means that an XProc pipeline can load those documents in a completely
straightforward way. Consider this pipeline:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 name="main" version="3.1">
 <p:output port="result"/>
 <p:option name="uri"/>

 <p:load href="{$uri}"/>

</p:declare-step>

This pipeline simply loads a document and serializes it. For example:

$ bin/xmlcalabash.sh pipelines/document.xpl uri=https:// ↩
testdata.xmlcalabash.com/index.xml

Returns the XML document:

<?xml version="1.0" encoding="UTF-8"?><html xmlns="http://www.w3.org/ ↩

90

https://lists.w3.org/Archives/Public/xproc-dev/2025Jan/0063.html
https://lists.w3.org/Archives/Public/xproc-dev/2025Jan/0063.html

1999/xhtml">
<head>
<meta charset="utf-8"/>
…
</body>
</html>

And:

$ bin/xmlcalabash.sh pipelines/document.xpl uri=https:// ↩
testdata.xmlcalabash.com/index.html

Returns an HTML document:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html; ↩
charset=UTF-8">
…
 </body>
</html>

The document served on https://testdata.xmlcalabash.com/index.html begins
like this:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<title>Index</title>
<link rel="stylesheet" href="style.css">
</head>
…

XProc has no trouble loading this “non-XML” document because it is served with an HTML
content type. So far, everything is looking pretty good for surfing the web with XProc.

But Andy had run up against a real problem, one best illustrated by an example. Consider
the web page shown in Figure 1 [92].

Introduction

91

Figure 1. A table of cities

This looks like a perfectly straightforward HTML page. But if we point our document pipeline
at it, we get something (that might be) quite unexpected:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.org/1999/xhtml">

Introduction

92

 <head>
 <meta http-equiv="Content-Type" content="text/html; ↩
charset=UTF-8">
 <title>Some cities in the UK</title>
 <script defer src="cities.js"></script>
 <link href="../style.css" rel="stylesheet">
 <link href="cities.css" rel="stylesheet">
 </head>
 <body>
 <p>[Home]</p>
 <h1>Some cities in the UK</h1>

 <table></table>

 <p>Load <button id="more">More</button></p>
 </body>
</html>

Right where we expected the table, we get a table.

A completely empty table.

The culprit here is the script tag on line 7 that loads cities.js. When the p:load step
accesses pages on the web, it does so in much the same way that curl does: it opens a
connection to the page, pulls down the data sent by the web server, and hands that back to
the processor.

Your browser does the same thing, but it also does a lot more. It downloads all of the linked
resources: images, stylesheets, scripts, etc. Then it constructs a styled presentation of the
page that includes the images. If scripts were downloaded, those are executed and the
page is updated accordingly. Scripting allows a page to be interactive: clicking, selecting,
scrolling, the browser supports a huge range of events all of which can cause more script
execution and more updates to the page.

All of this is out of reach from the p:load step. It wouldn’t be hard to extend our document
pipeline to find and download linked images, stylesheets, and scripts, but we couldn’t
execute those scripts. We don’t have a browser sandbox to run them in.

2. Enter Selenium

Selenium’s tagline is “Selenium automates browsers. That’s it!” Automation works because
modern web browsers implement a “WebDriver” set of APIs for this purpose. The main use
case is automated testing of web applications, but it’s not limited to that.

Selenium is roughly three APIs in a trench coat. One of those APIs talks to the web
browser through the WebDriver API. The other exposes a standard Selenium API to a host
language. And in the middle, Selenium wires these two APIs together.

There are host language APIs for Java, Python, C#, Ruby, JavaScript, and Kotlin. For an
implementation written in any of those languages, talking to Selenium is just a matter of
loading the right language bindings.

In theory, we could start a web driver for our browser, start Selenium, direct Selenium to
load the page, wait for the scripts running in the browser to populate the table, and ask
Selenium to give us the data.

All we need to do is implement a Selenium step.

Enter Selenium

93

The trouble with a Selenium step is that it doesn’t do anything all by itself. It exposes an
API that you can drive from a host language. You’d need to be able to drive it from XProc.

To drive Selenium from XProc, the step would need to have some way to describe
what the author wanted to do. XProc isn’t really designed to support stateful, imperative
programming so mapping directly to the Selenium host language APIs isn’t really an option.

What’s needed is some way for the pipeline author to describe how they want Selenium to
behave. They need some mechanism for scripting the interaction. Then we can imagine a
Selenium step that takes that script as input and uses it to interact with the browser.

3. Enter Invisible XML

The most practical thing seemed to be a little text-based scripting language. Armed with
a small amount of experience using Selenium to test web applications and a Selenium
reference guide, the plan was:

1. Invent a little bit of syntax.

2. Write a parser for it.

3. See if it works.

4. Repeat until done.

Invisible XML fits perfectly here:

1. Writing parsers in iXML is easy.

2. My processor already supports Invisible XML, so parsing the users script with iXML is
easy.

3. The output of a parse is an XML document.

4. In an XProc implementation, writing an interpreter for some XML is easy.

Here’s how it started:

script version 0.2 .
page "http://example.com" .

We start with a version, so we can adapt as it evolves, and then we know we’re going to
want to load a page. Next, we write a little bit of iXML to parse it:

ixml version "1.1-nineml" .

script = versionDecl, s, page, s .

-versionDecl = s, -"script version ", version, s, -"." .
@version = "0.2" .

@page = -"page", RS, string, s, -"." .

(I’m eliding a few more lines of grammar needed to parse strings and whitespace. I
probably didn’t write them for this purpose anyway, I probably copied them from some
other grammar.)

Now we just add some more syntax, then some more iXML, and “repeat until done.”

Enter Invisible XML

94

It finished as 130ish lines [https://codeberg.org/xmlcalabash/xmlcalabash3/src/branch/main/
xmlcalabash/src/main/resources/com/xmlcalabash/ext/selenium-grammar.ixml] of iXML. It
took a few evenings, but the resulting language [https://docs.xmlcalabash.com/reference/
current/cx-selenium.html#selenium-scripting] supports a healthy subset of the Selenium
API, three kinds of conditional blocks, subroutines, variables, and XPath expressions.

(It is in many respects a very sloppy language with side effects and minimal static checking.
But it’s a proof-of-concept as much as anything.)

4. cx:selenium

The cx:selenium step [https://docs.xmlcalabash.com/reference/current/cx-selenium.html]
is an atomic step:

<p:declare-step type="cx:selenium">
 <p:input port="source" content-types="text xml"/>
 <p:output port="result" sequence="true"/>
 <p:option name="browser" as="xs:string?"/>
 <p:option name="capabilities" as="map(xs:QName, item())?"/>
 <p:option name="arguments" as="xs:string*"/>
</p:declare-step>

Here’s a pipeline that uses cx:selenium instead of p:load to get a web page. Like our
earlier pipeline, this one loads a page and serializes it. But this time, it loads the page with
Selenium, allowing the browser to evaluate any scripts it contains:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:cx="http://xmlcalabash.com/ns/extensions"
 name="main" version="3.1">
 <p:import href="https://xmlcalabash.com/ext/library/selenium.xpl"/>
 <p:output port="result"/>
 <p:option name="uri"/>

 <cx:selenium>
 <p:with-option name="arguments" select="('--headless')"/>
 <p:with-input>
 <p:inline content-type="text/plain">script version 0.2 .
 page "{$uri}" .
 pause PT0.5S .
 output to result .
 </p:inline>
 </p:with-input>
 </cx:selenium>
</p:declare-step>

Running that script gives us table data:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8"/>
 <title>Some cities in the UK</title>
 <script defer="defer" src="cities.js"/>
 <link href="../style.css" rel="stylesheet"/>
 <link href="cities.css" rel="stylesheet"/>
 </head>

cx:selenium

95

https://codeberg.org/xmlcalabash/xmlcalabash3/src/branch/main/xmlcalabash/src/main/resources/com/xmlcalabash/ext/selenium-grammar.ixml
https://codeberg.org/xmlcalabash/xmlcalabash3/src/branch/main/xmlcalabash/src/main/resources/com/xmlcalabash/ext/selenium-grammar.ixml
https://codeberg.org/xmlcalabash/xmlcalabash3/src/branch/main/xmlcalabash/src/main/resources/com/xmlcalabash/ext/selenium-grammar.ixml
https://docs.xmlcalabash.com/reference/current/cx-selenium.html#selenium-scripting
https://docs.xmlcalabash.com/reference/current/cx-selenium.html#selenium-scripting
https://docs.xmlcalabash.com/reference/current/cx-selenium.html#selenium-scripting
https://docs.xmlcalabash.com/reference/current/cx-selenium.html
https://docs.xmlcalabash.com/reference/current/cx-selenium.html

 <body>
 <p>[Home]</p>
 <h1>Some cities in the UK</h1>
 <table>
 <thead>
 <tr>
 <th>City</th>
 <th>Country</th>
 <th>Latitude</th>
 <th>Longitude</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Abbots Langley</td>
 <td>England</td>
 <td>51.701 </td>
 <td>-0.416 </td>
 </tr>
 <tr>
 <td>Aberaman</td>
 <td>Wales</td>
 <td>51.7   </td>
 <td>-3.4333</td>
 </tr>
…
 <tr>
 <td>Addlestone</td>
 <td>England</td>
 <td>51.3695</td>
 <td>-0.4901</td>
 </tr>
 </tbody>
 </table>
 <p>Load <button id="more">More</button>
 </p>
 </body>
</html>

How does it work? The page command loads the page, the pause command waits for half
a second so the browser has a chance to fill the table, and the output command sends
the current page DOM to the result port.

We can also interact with the page. This script:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:cx="http://xmlcalabash.com/ns/extensions"
 name="main" version="3.1">
 <p:import href="https://xmlcalabash.com/ext/library/selenium.xpl"/>
 <p:output port="result"/>
 <p:option name="uri"/>

 <cx:selenium>
 <p:with-option name="arguments" select="('--headless')"/>
 <p:with-input>
 <p:inline content-type="text/plain">script version 0.2 .

cx:selenium

96

 page "{$uri}" .

 find $button by id = "more" .
 click $button .
 pause PT0.5S .

 output to result .
 </p:inline>
 </p:with-input>
 </cx:selenium>
</p:declare-step>

Finds the button on the page with the id “more”, clicks it, waits, then returns the page. That
will return the second page of results.

As a final example, consider this script:

script version 0.2 .
page "{$uri}" .

until "not(empty($row))" do
 find $row by selector = "table tbody tr" .
 pause PT0.25S .
done

Search for $city, hit more until we find it
find $city by xpath = "//td[. = '{$city}']".
while "empty($city)" do
 call clickNext .
 find $city by xpath = "//td[. = '{$city}']".
done

find $row by xpath "//tr[td[. = '{$city}']]" .

output xpath "normalize-space(replace($row/*:td[3], ' ', ' '))" to ↩
result .
output xpath "normalize-space(replace($row/h:td[4], ' ', ' '))" to ↩
result .

close .

subroutine clickNext
 find $button by selector = "button" .
 scroll to $button .
 click $button .
 pause PT0.25S .
end

This script:

1. Loads the page.

2. Waits until the table has data, rather than assuming 0.5s will be long enough.

3. Looks for the city with an XPath expression. While it isn’t present, it uses a subroutine to
click the next button.

cx:selenium

97

4. If we’ve found the city, we get its row.

5. Then we output the latitude and longitude after doing a little cleanup.

6. Then we close the browser.

7. The “clickNext” subroutine scrolls finds the button, scrolls to it, clicks it, and wait’s ¼s.

5. Security implications

Selenium drives a headless browser. It can essentially do anything with the browser that
you can. And it’s quite possibly driving a browser that you’ve already used to login to sites.
A malicious script could potentially wreak havoc.

To help mitigate this problem, the cx:selenium step can be configured with a whitelist:

<x:selenium xmlns:x="https://xmlcalabash.com/ext/ns/selenium"
 whitelist="http://localhost.*
 https://testdata.xmlcalabash.com/.*"/>

With this configuration, the step will only accept URIs that match localhost or
testdata.xmlcalabash.com.

6. Next steps

The scripting language could certainly be improved. Someone with deeper Selenium
experience might be able to see immediately what’s missing. Any attempts to do complex
browser interactions are bound to turn up areas where things are awkward at best.

But even as it stands today, it offers new opportunties for surfing the web with XProc.

Security implications

98

PrintCSS Meets LaTeX
Implementation of a PrintCSS Renderer Prototype Using a CSS Parser,
an XML-to-TeX Conversion Framework, and a LuaTeX-Based Framework
Martin Kraetke, le-tex publishing services GmbH

Christine Windeln, le-tex publishing services GmbH

1. Introduction

At Markup UK 2023, I discussed various methods for converting XML to TeX and presented
our own approach using the transpect library xml2tex, which can be configured to convert
arbitrary XML into TeX 1. xml2tex and its associated libraries are based on XProc and XSLT
and are used at le-tex for several applications, such as a converter for converting Word to
TeX, an equation renderer, and for our typesetting system xerif2.

For the latter, the schema-independent configurability of xml2tex helps to meet the diverse
content requirements of our xerif clients. The configuration allows us to use several
different XML schemas and map them to customer-specific TeX macros. While the xml2tex
configuration allows us to map XML to TeX very flexibly with xerif , the layout setup,
e.g. setting up the page format, selecting fonts, specifying spacing, etc. is still done
conventionally in TeX.

In xerif, CoCoTeX serves this purpose. It’s a custom-tailored TeX framework that facilitates
the setup of these parameters and extends LaTeX with numerous custom macros, a
custom metadata and table model, accessibility support, and more. However, TeX’s
complexity and the steep learning curve of our CoCoTeX framework presenting a major
hurdle for external newcomers attempting to use xerif effortlessly.

A language for formatting page-based media that is considered much easier to learn is
PrintCSS. Unlike TeX, PrintCSS is accessible and user-friendly, leveraging the familiar
CSS syntax. This approach has led to its widespread adoption in automated publishing
workflows. PrintCSS introduces a set of CSS specifications tailored for print media,
enabling precise control over page layouts, content fragmentation (such as pages,
columns, or regions), and content generation (including running headers, page numbers,
and listings). By utilizing PrintCSS, HTML or XML content can be formatted for paged
media output in a manner akin to styling conventional web pages with CSS.

However, it's important to note that PrintCSS has certain limitations: the existing
specifications lack specific features, and in some areas, they remain underspecified.
Moreover, there are only a limited number of implementations of these specifications, and
the two available open-source renderers implement only a subset of the common CSS
paged media features. Instead, these implementations address the absence of certain
functionalities through the use of proprietary extensions. Leading developers of browser

11 Martin Kraetke (2023): Bridging the Gaps Between XML and TEX. Available at https://markupuk.org/2023/webhelp/
index.html (Accessed: May 15, 2025)
2le-tex publishing services (2025): xerif. automatic is better. Available at: https://www.le-tex.de/en/xerif.html (Accessed: May 15,
2025)

100

https://markupuk.org/2023/webhelp/index.html
https://markupuk.org/2023/webhelp/index.html
https://www.le-tex.de/en/xerif.html

engines—namely Google, Mozilla, and Apple—do not provide support for PrintCSS in their
browsers and show little motivation to include this feature in the future.

Nevertheless, the advantages of PrintCSS's ease of learning outweigh the disadvantages
of its ambiguous specifications, so we sought to investigate the feasibility of incorporating
PrintCSS support within the xerif framework. Starting from October 2024, Christine took
on the task as part of her bachelor thesis and was able to implement a prototypic support
for PrintCSS in xerif . This paper aims to outline the steps undertaken to implement their
solution, discuss how we addressed the conceptual and technological differences between
PrintCSS and TeX, and identify potential directions for future research.

2. The Status Quo: Configuring Layouts in xerif
To understand how the layout configuration works, we have to take a look at the TeX
preamble of a particular TeX document created with xerif . The layout features and default
settings are provided by the cocotex document class. The customer-specific configuration
is represented by a custom TeX style that is usually named after the client, e.g. brill for
Koninklijke Brill NV, or now De Gruyter Brill. Macros for tables are provided by h tmltabs ,
a package for specifying tables in a HTML-like fashion.

\documentclass[greek,main=english,pubtype=collection]{cocotex}
\usepackage{htmltabs}
\usepackage[layout=1]{brill}

The CoCoTeX framework is separated into various modules that provide specific macros for
various layout aspects:

• Kernel: default macros to declare and evaluate CoCoTeX macros and properties

• Common: default settings and required TeX packages

• Floats: images and tables

• Frame: page boxes, e.g. trim box, bleed box and crop marks

• Accessibility: support for PDF/UA

• Headings: part, chapter and section headings and their metadata

• Lists: provides macros for various list types

• Meta: macros for document metadata

• Notes: endnotes and footnotes

• Script: default font settings

• Title: Macros and settings for title pages

The custom TeX style is built upon the features provided by CoCoTeX and sets customer-
specific parameters such as margins, fonts, type area, font sizes, leading and other
styles. It’s also possible to define customer-specific macros or overwrite existing CoCoTeX
macros. The style files can be selectively overridden by a cascading configuration. For
example, you could specify different TeX styles based on the imprint, book series or
individual books if necessary but our developers use this approach rarely.

For TeX developers, using TeX is obviously the most natural way to specify layout
parameters. However, a normal TeX user would hardly be able to create a layout with xerif .

The Status Quo: Configuring Layouts in xerif

101

Unfortunately, it is not enough to be able to write a paper with LaTeX. You need to have
advanced TeX programming skills, be familiar with many libraries in the TeX ecosystem and
know the CoCoTeX basics. For TeX novices, the learning curve might quickly become as
steep as a wall.

3. PrintCSS and TeX

Of course, one of the main reasons to use TeX for xerif was that TeX is one of the
technological building blocks of le-tex. The company also has little experience with other
typesetting technologies such as XSL-FO and PrintCSS. But aside from the general
tendency towards self-justification bias, there are valid reasons to prefer TeX over
PrintCSS:

In contrast to TeX, CSS is not a programming but a formatting language. There is less
you can do with PrintCSS and you are dependent on the functionality being provided by a
layout engine, the PrintCSS renderer. PrintCSS has a quite smaller feature set compared
to TeX and its vast ecosystem of packages. Although PrintCSS, unlike TeX, has a public
specification, many things are missing that must be substituted by proprietary functions of
the PrintCSS renderer.

PrintCSS might not be as intuitive as InDesign, but its core syntax and principles
are beginner-friendly especially if you gained prior knowledge of CSS by web design.
It provides a solid foundation for defining page-based layouts, and limitations in the
specification could be addressed through vendor-specific CSS extensions.

TeX is a powerful typesetting engine capable of producing high-quality print documents and
it might be tempting to think of TeX acting exclusively as a PrintCSS renderer. It is worth
recalling that PassiveTeX, created by Michel Goossens and Sebastian Rahtz, served as an
experimental solution for leveraging TeX as an XSL-FO formatter 3. But is TeX also capable
of being used as PrintCSS renderer?

Conceptually, mapping CSS properties to TeX equivalents (e.g., margins, page breaks,
fonts) is possible. However, this approach present a few practical challenges:

1. Different paradigms: CSS is box-based and declarative; TeX is macro-based and
procedural. A wide range of differences exist also between PrintCSS and TeX, from the
underlying page model and font characteristics to the treatment of typographic issues.

2. Limited parsing capabilities: TeX doesn't natively understand XML, HTML or CSS.

3. Missing Features : CSS features like flexbox, grid, or advanced selectors have no direct
TeX equivalent.

In this context, the three primary challenges involve parsing PrintCSS, transforming HTML
to TeX, and accurately mapping CSS styling rules to corresponding TeX commands.
However, relying solely on TeX doesn't seem practical for several reasons:

Creating a custom PrintCSS parser in TeX would be necessary, and the same challenge
arises when handling HTML or XML. While TeX-based tools like xmltex could be used
for XML parsing, they provide only limited configurability and do not support validation.
Because of its procedural nature, TeX is not well-suited for navigating complex tree-based
structures like XML and generating mixed content. So, there are additional layers needed,
to facilitate the transformation between PrintCSS and TeX. The next section provides more
details.

32 Martin Kraetke (2023): Bridging the Gaps Between XML and TEX. PassiveTeX. Available at https://markupuk.org/2023/
webhelp/index.html#Sec2.html (Accessed: May 15, 2025)

PrintCSS and TeX

102

https://markupuk.org/2023/webhelp/index.html#Sec2.html
https://markupuk.org/2023/webhelp/index.html#Sec2.html

4. Building a PrintCSS renderer

4.1. Preliminary Considerations

First it was necessary to define the scope – on the one hand, to keep the work within the
limits of a bachelor's thesis, and on the other hand, to provide a solid feature set that make
it feasible for practical use. The most important specifications for PrintCSS have all been
taken into account:

• CSS Paged Media Module Level 3 4

• CSS Fragmentation Module Level 3 5: partitions a flow into pages, columns, or regions,

• CSS Generated Content for Paged Media Module 6: running headers, footers and
footnotes

• CSS Page Floats 7 specifies page floats that can be shift to the top or bottom

For a detailed list of the included CSS features, please refer to page Section 6 [107].
However, there are various other CSS specifications involved, which are necessary for
specifying fonts, applying colors and text styles, define font sizes and line heights etc. We
defined a standard feature set which is listed at page Section 7 [107].

4.2. Parsing PrintCSS

Christine took on the majority of the work by independently implementing and testing the
code, while occasionally consulting with Martin throughout the process. But she did not
need to start from scratch. A CSS parser was already part of our transpect framework, but
had to be extended for the PrintCSS grammar.

The CSS parser is based on an EBNF schema. EBNF is the abbreviation of Extended
Backus-Naur form and is a declarative syntax to express a syntax (metasyntax) of a formal
language. Christine has extended our CSS EBNF schema. For example, here is an EBNF
code snippet that declares the syntax for specifying page rules in CSS:

pagerule ::= '@page' S* (pageclass | pagename)?
pagename ::= IDENT
pageclass ::= ':' ('first'|'blank'|'left'|'right')

Using Gunther Rademacher's REx Parser Generator 8, the EBNF was later converted to
XSLT. The XSLT is applied on the CSS file and creates an XML document including the
CSS rules. The example below shows the XML representation (CSS XML) of a page rule:

<atrule origin="/tmp/style.css" type="page">
 <raw-css xml:space="preserve">
 @page {
 size:A4;
 margin: 2cm 2cm 3cm 2cm;

43 Elika J. Etemad et. al (2023): CSS Paged Media Module Level 3. W3C Working Draft. Available at https://www.w3.org/TR/
css-page-3/ (Accessed May 15, 2025)
54 Rossen Atanassov and Elika J. Etemad (2018): CSS Fragmentation Module Level 3. W3C Candidate Recommendation.
Available at https://www.w3.org/TR/css-break-3/ (Accessed May 15, 2025)
65 Mike Bremford and Rachel Andrew (2024): CSS Generated Content for Paged Media Module. W3C Working Draft. https://
www.w3.org/TR/css-gcpm-3/ (Accessed May 15, 2025)
76 Johannes Wilm (2015): CSS Page Floats. W3C First Public Working Draft. Available at https://www.w3.org/TR/css-page-
floats-3/ (Accessed May 15, 2025)
87 Guter Rademacher (2025): REx Parser Generator. Available at https://github.com/GuntherRademacher/rex-parser-generator
(Accessed May 15, 2025)

Building a PrintCSS renderer

103

https://www.w3.org/TR/css-page-3/
https://www.w3.org/TR/css-page-3/
https://www.w3.org/TR/css-break-3/
https://www.w3.org/TR/css-gcpm-3/
https://www.w3.org/TR/css-gcpm-3/
https://www.w3.org/TR/css-page-floats-3/
https://www.w3.org/TR/css-page-floats-3/
https://github.com/GuntherRademacher/rex-parser-generator

 }
 </raw-css>
 <declaration property="size" value="A4"/>
 <shorthand property="margin" value="2cm 2cm 3cm 2cm" num="2"/>
 <declaration property="margin-top" value="2cm" shorthand="2"/>
 <declaration property="margin-right" value="2cm" shorthand="2"/>
 <declaration property="margin-bottom" value="3cm" shorthand="2"/>
 <declaration property="margin-left" value="2cm" shorthand="2"/>
</atrule>

Later, the CSS rules are applied to the content by evaluating the CSS selectors and
inserted back into the source file as CSS attributes (CSSa) 9:

<p>The result of a Delta-DOR measurement provides knowledge
of the spacecraft’s angular position in the inertial reference frame ↩
defined
by the quasars (CCSDS 2019</ ↩
a>).</p>

This CSS parser is encapsulated in a simple XProc step, which takes an XHTML document
and an XSLT parser stylesheet as inputs. It produces both the CSS XML representation
and an XHTML document with embedded CSS attributes (XHTML/CSSa):

<css:expand>
 <p:input port="source" primary="true"/>
 <p:input port="stylesheet"/>
 <p:output port="result" primary="true"/>
 <p:output port="xml-representation"/>
 <p:output port="report" sequence="true"/>
</css:expand>

4.3. Generating an xml2tex Configuration

How is this information converted to TeX? Our xml2tex library is for us a natural choice
for several reasons: it provides a schema-independent grammar for transforming XML into
TeX, and it includes built-in libraries for handling formulas and tables, eliminating the need
for custom solutions. Moreover, it seamlessly integrates with our xerif typesetting system.

As in CSS, in TeX some formatting information is inserted inline into the text, while
others are typically declared in an external style file. For example, there are general
formatting rules that specify the layout of the page and other rules that set a portion of
text in italics. For this reason, Christine needed to analyze these layers and separate
them systematically. Thankfully, xml2tex is able to declare different outputs with one
configuration, e.g. a TeX file and a style file.

So, we decided to generate a xml2tex configuration with XSLT by analyzing XHTML/CSSa
and CSS XML. The first part of the generated configuration is the creation of the TeX
style file. Paper format, font declarations, font styles, headline elements (h1…h6), etc. are
evaluated and the respective TeX macros are created. To align with xerif , the TeX style
includes many instructions from our CoCoTeX framework. For example, by analyzing the
size property of the @page rule above, this TeX snippet is created:

98 Gerrit Imsieke (2013). Conveying Layout Information with CSSa (Talk held at XML Prague). Available at https://
archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html#/step-1
(Accessed May 15, 2025)

Generating an xml2tex Configuration

104

https://archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html#/step-1
https://archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html#/step-1

<template context="/html:html/html:head/(html:style|html:link)[1]">
 <file href="file:///home/cwindeln/printcss2tex/tmp/printcss.sty" ↩
encoding="utf-8">
% (...)
\setlength{\pagewidth}{210mm}
\setlength{\pageheight}{297mm}
% (...)
 </file>
</template>

The second part of the configuration is generated by analyzing the CSS declarations
and creating xml2tex templates from it. The xml2tex template below is generated from a
declaration which sets the font size for <p> elements:

<template context="*:p">
 <text>{\fontsize{11.5pt}</text>
 <xsl:next-match xmlns:xsl="http://www.w3.org/1999/XSL/Transform"/>
 <text>}</text>
</template>

During the implementation, Christine noticed that there is no equivalent for the CSS
selectors ::before and ::after in TeX. Therefore, we decided to create placeholder
elements before, into which we can later generate the content using xml2tex. The entire
transformation is organized into distinct steps, as illustrated below:

1. Parse the CSS and generate CSS XML and XHTML/CSSa

2. Insert pseudo elements for content that is inserted with the CSS selectors ::before
and ::after

3. Generate a xml2tex configuration from CSS XML and XHTML/CSSa

4. Use xml2tex with the generated configuration and apply it on the XHTML/CSSa
document to create TeX and the style file.

5. Render the TeX file with LuaTeX

Generating an xml2tex Configuration

105

Figure 1. Figure 1: The transformation of XHTML and CSS to TeX

css:expand insert-
placeholders

css-to-xml2tex-
conf xml2tex

XHTML

CSS

CSS XML

XHTML/CSSa xml2tex config

luatex

TeX Content

TeX Style

PDF

CoCoTeX

5. Summary, Discussion and Future Work
Christine was able to write a pipeline that can create a PDF from HTML and CSS by
extending our CSS parser and using libraries that are used in xerif such as xml2tex and
CoCoTeX. The presented software tool provides fundamental support for the PrintCSS
specifications and could provide a basis for our clients to easily create their own layouts
using PrintCSS.

However, due to the inherent differences between CSS and TeX, certain limitations in
implementation may arise. In particular, complex layout features or specific typographic
refinements may not be fully realized according to the PrintCSS standards. For example,
while CSS allows you to specify the maximum number of orphans in a paragraph, in TeX
you would specify a penalty. Multicolumn layouts work slightly differently in CSS and TeX
and we did not introduce advanced CSS layout models like grid and flexbox.

Furthermore, CoCoTeX offers many layout features that are not possible with standard
PrintCSS todays like a class system for figures and tables, improved word- and line-
breaking options, custom dictionaries, advanced listings (ToC, LoT, LoF) and a robust
PDF/UA-compliant accessibility support. Many of the CoCoTeX features did not make it yet
into our PrintCSS renderer, but we plan to implement them as vendor-specific extensions in
the future. More advanced CSS features need to be evaluated and might be implemented
in TeX.

In any case, our goal isn't to cover the entire CSS specification. As with other PrintCSS
formatters, there will always be limitations in the supported CSS vocabulary, which won't

Summary, Discussion and Future Work

106

be particularly significant for users as long as they can realize their typographic ideas.
After all, there is no web browser that support PrintCSS, and we certainly don't need CSS
animations for xerif. Looking ahead, we aim to further explore the boundaries of what TeX
can represent in the context of PrintCSS.

6. Appendix I: Supported PrintCSS Features

Item Limitations Spec
@page rule CSS Paged Media

Module Level 3page selectors :blank
@(top|right|bottom|left)- ((left|right)-
corner)| (top|right|middle|center|left|
bottom)

size
page-orientation
marks
bleed
break-(after|before|inside) CSS Fragmentation

Module Level 3page-break-(after|before|inside)
orphans
widows
string-set CSS Generated

Content for Paged
Media Module

@footnote
footnote-call
footnote-marker
float only block-

start|top|bottom
CSS Page Floats a

float-reference only column|page
a9 Johannes Wilm et. al (2024): CSS Page Floats. W3C Editor’s Draft. Available at https://drafts.csswg.org/css-page-floats/
(Accessed May 15, 2025)

7. Appendix II: Supported Standard CSS Features

Item Limitations Spec
selectors only Universal,

#id, .class, ::before, ::after,
::first-line, ::first-letter

CSS Selectors Level 3 a

@font-face rule only OTF fonts supported CSS Fonts Module Level 3 b

font-family
font-size
font-style
font-variant-position
font-variant-caps
font-weight
margin(-(top|right|
bottom|left))?

 CSS Box Model Module Level
3 c

padding(-(top|right|
bottom|left))?

width, height CSS Box Sizing Module Level
3 dmin-width, min-height

Appendix I: Supported PrintCSS Features

107

https://drafts.csswg.org/css-page-floats/

border(-(top|right|
bottom|left))?(-(color|
style|width))?

 CSS Backgrounds and
Borders Module Level 3 e

background(-color)?
color CSS Color Module Level 3 f

text-align CSS Text Module Level 3 g

text-indent
line-break
hyphens
white-space
counter-reset CSS Lists and Counters

Module Level 3 hcounter-increment
list-style(-type)?
bookmark-(level|label|
state)

 CSS Generated Content
Module Level 3 i

leader()
target-counter()
target-text()

a10 Tantek Çelik et. al (2018): Selectors Level 3. W3C Recommendation. Available at https://www.w3.org/TR/selectors-3/
(Accessed May 15, 2025)
b11 John Daggett et. al (2018): CSS Fonts Module Level 3. Available at https://www.w3.org/TR/css-fonts-3/ (Accessed May 15,
2025)
c12 Elika J. Etemad (2024): CSS Box Model Module Level 3. W3C Recommendation. Available at https://www.w3.org/TR/
css-box-3/ (Accessed May 15, 2025)
d13 Tab Atkins and Elika J. Etemad (2024): CSS Box Sizing Module Level 3. W3C Working Draft. Available at https://
www.w3.org/TR/css-sizing-3/ (Accessed May 15, 2025)
e14 Elika J. Etemad and Brad Kemper (2024): CSS Backgrounds and Borders Module Level 3. W3C Candidate
Recommendation Draft. Available at https://www.w3.org/TR/css-backgrounds-3/ (Accessed May 15, 2025)
f15 Tantek Çelik et. al (2018): CSS Color Module Level 3. W3C Recommendation. Available at https://www.w3.org/TR/css-
color-3/ (Accessed May 15, 2025)
g16 Elika J. Etemad et. al (2024): CSS Text Module Level 3. W3C Candidate Recommendation Draft. Available at https://
www.w3.org/TR/css-text-3/ Accessed May 15, 2025)
h17 Elika J. Etemad and Tab Atkins (2020): CSS Lists and Counters Module Level 3. W3C Working Draft. Available at https://
www.w3.org/TR/css-lists-3/ (Accessed May 15, 2025)
i18 Elika J. Etemad and David Cramer (2019): W3C Working Draft. Available at https://www.w3.org/TR/css-content-3/
(Accessed May 15, 2025)

Appendix II: Supported Standard CSS Features

108

https://www.w3.org/TR/selectors-3/
https://www.w3.org/TR/css-fonts-3/
https://www.w3.org/TR/css-box-3/
https://www.w3.org/TR/css-box-3/
https://www.w3.org/TR/css-sizing-3/
https://www.w3.org/TR/css-sizing-3/
https://www.w3.org/TR/css-backgrounds-3/
https://www.w3.org/TR/css-color-3/
https://www.w3.org/TR/css-color-3/
https://www.w3.org/TR/css-text-3/
https://www.w3.org/TR/css-text-3/
https://www.w3.org/TR/css-lists-3/
https://www.w3.org/TR/css-lists-3/
https://www.w3.org/TR/css-content-3/

Adding new Cars to a Running Train
Adding markup for multilingual documents to JATS
Deborah Aleyne Lapeyre, Mulberry Technologies, Inc.

B. Tommie Usdin, Mulberry Technologies, Inc.

The Journal Article Tag Suite (JATS) is the ANSI/NISO standard that is defines the tag
set used to archive, exchange, and publish journal articles worldwide. JATS 1.4 was
approved (as JATS version 1.4 ANSI/NISO Z39.96-2024) on October 31, 2024. The
most exciting new capability added in JATS 1.4 is a way to encode multi-language
journal articles. JATS defines a “multi-language” article not merely as an article written
in English or German with a couple of quotations in Latin or French. A true multilingual
article contains substantial portions of the content written and presented in more than
one language or contains some parts in one language and other parts in a different
language or languages. The JATS tag set has always been able to encode articles in
any language and to identify portions of an article that are in a different language from
the containing article (using @xml:lang). However, JATS has not, until version 1.4, been
able to encode (in a graceful way) articles that are in whole or large-part multilingual.

The JATS multi-language mechanism harks back to Architectural Forms, and is
implemented mostly using attributes, which can identify:

• an entire article in 2 or more languages

• substantial portions of content (paragraphs and sections) replicated in 2 or more
languages

• block structures (such as figures, tables, and equations) replicated in 2 or more
languages

• articles where some of the content is in one language and some in another, and

• article metadata (such as the article title or abstract) in multiple languages.

This paper describes the encoding available for many styles of multi-language
functionality, provides examples, lists useful resources to learn more, and gives a few
reasons why this mechanism may be of interest to you, even if you or your clients do not
code in JATS or work with journal articles.

1. What is JATS?

The Journal Article Tag Suite (hereafter JATS) is an ANSI/NISO standard (JATS version
1.4 ANSI/NISO Z39.96-2025) designed to capture the content and metadata of journal
articles. JATS is only a tag set, unlike TEI, DITA, and Akoma Ntoso, which provide
extensive software/processing components. JATS provides semantic tags for the parts
of journals (particularly in the metadata) that have traditionally been used for discovery

110

and to manage journal articles. The JATS tagging for body structures is quite generic
(paragraphs, tables, figures, lists, footnotes, etc.). The metadata and bibliographic elements
are typically semantic and divide many elements into logical components (for example:
multiple parts of a personal name, extensive information on collaborations, elaborate article
funding metadata, and over 60 elements within a bibliographic citation).

Journal articles are not typically authored in JATS: they may be, for example, written in
Microsoft Word or encoded in a bespoke journal article tag set. But at some stage in
their lifecycle nearly all the world's journal articles are translated into JATS. JATS is the
tag set publishers and archives use to communicate and exchange; JATS can be input
to a wide variety of hosting platforms; JATS is the archival format of choice for many
large-scale archives such as PubMed Central, UK PubMed Central, JSTOR, the British
National Library, the Australian National Library, and the US Library of Congress. JATS is
international; in 2018 it was used in more than 30 countries, and that number grows over
time.

2. Requirements and Constraints

Historically, publishing in general, and journal publishing in particular, has been dominated
by a relatively small portion of the world and by European languages and English in
particular. This is changing; there are not only increasing numbers of journals in other
languages, there is a growing need to support multilingual journal articles. Multilingual
content is much more than block quotes in French or Latin inside a article in English.
Familiar examples from current publishing practice include an article in two original
languages (the Canadian author wrote both French and English versions) or in an original
language and one or more translations (a French/English article was also translated into
Spanish).

2.1. How Multi-language Documents are Presented and Stored

Both the presentation styles and the order of storing components are widely variable for
current multi-language documents. When substantial portions of document content are in
more than one language, the same structures are often repeated, once in each language.
For example: alternate sections could repeat the same content in Spanish and Portuguese.
As another, a paragraph could be repeated, first in Greek, then in Romanian, and then in
Italian. Sometimes an article will be almost entirely in one language with selected structures
in both (or only) another language, as article written in Korean with both metadata and table
content provided in English. [[JATSMultilang]]

In such a multilingual document, when there are two or more “same-content” structures
(sections, figures, boxed-texts, tables, etc.), differing only in language, few assumptions
can be made about the locations of and the interrelationships between these same-content
objects within the document.

◆ content objects written in a single language need not be contiguous, and

◆ equivalent structures (the same content, differing only by language) need not be located
anywhere near each other in the document

For these reasons, a JATS multi-language mechanism could not simply enclose (wrap up)
all the same-content objects, unless the entire article was presented, in order, twice. This
wrapper-approach has been the mechanism of the long-standing JATS element <block-
alternatives>, which was created to hold multiple copies of a block object such as
a figure or table in multiple languages. Users tried to use <block-alternatives> for
multilingual documents and found that it did not meet real-life needs. For true interspersed
multilingualism, a wrapper-style mechanism is not sufficient. [[JATSMultilang]]

Requirements and Constraints

111

2.2. Requirements and Non-Requirements

The scope and culture of JATS impose some requirements and constraints on the ways
in which JATS can or should grow. The most important of these are that within the 1.X
line strict backwards compatibility is essential, inconvenience to current users should be
minimized, and JATS is a source format for storage and interchange rather than a display
format.

2.2.1. Backwards Compatibility

The current version of JATS is 1.4. Like all versions in the 1.X line, it is fully backwards
compatible with all previous versions of JATS. This means that any document valid to one
of the JATS profiles (Archiving, Publishing, Authoring) in any of the previous versions of
JATS will be valid to the current version. The JATS Committee has further committed to the
position that all previous valid JATS 1.X documents will be valid to future 1.x versions of
that profile of JATS.

While there has been discussion of what a 2.0 version of JATS might look like, and what
infelicities in JATS might be fixed if /when we can tidy up by removing structures that are
no longer optimal, JATS 2.0 is in the indefinite future. So, accommodation of multilingual
articles had to be built into JATS 1.X, and thus in a way that articles that were created
before this was developed would be valid and would have no changes to their meanings
when used with a schema that included the multi-language mechanism.

2.2.2. The Needs of the Few Must Not Burden the Many

Most journal publishers do not publish multilingual articles, most journal articles are not
multilingual, and most JATS users have not been uncomfortable because JATS did not
accommodate multilingual articles. It was important that, in adding a mechanism to enable
a small but growing community to use JATS, we not impose a burden on established users.
(The JATS Standing Committee was told, in no uncertain terms, that “NOBODY NEEDS
THAT #*($!”. We interpreted that to mean that the speaker didn't need it, wasn't interested
in people who might need it, and was concerned about the burden that might be imposed
on existing users if it were added.)

It was the hope of the JATS Standing Committee that the JATS multi-language mechanism
be neither bulky nor intrusive. Ideally, any mechanism should enable users to create
true multilingual documents while not requiring changes to the tagging of mono-lingual
documents. Ideally, any multi-language mechanisms should be completely ignorable by
creators/users of mono-lingual documents. In other words, if you do not publish multilingual
documents, nothing in your JATS-world should change.

The JATS 1.4 multi-language structures were designed to be TOTALLY IGNORABLE.
Users who have no need for multiple languages in one document can simply not use any
of them. Some users make their own subsets of the JATS model that do not include any
of these attributes. They can continue to do so and to leave the multi-language structures
out of their working versions. Documents that are valid to such a subset will be valid to the
published models and will be indistinguishable from documents that were created using the
whole model that happen not to use the Multi-Language structures. [[JATSMLExamples]]

Further, it is highly unlikely that any user will ever use all of the multi-language attributes
at all, and never within a single article (with the possible exception of articles created to
demonstrate use of the mechanism). The multi-language attributes can and should be used
only when appropriate and useful, and when the information is available. A user should use
the multi-language attributes, like everything else in JATS, to encode information that they
desire to provide to users of the articles. There is no virtue, and significant cost, in encoding
information in the XML that is unimportant, redundant, or of questionable accuracy. In other
words, if:

Requirements and Non-Requirements

112

◆ you don't know, or

◆ you don't care and don't think your users will either

don't clutter your XML. The multi-language mechanism is a tool for communicating
multilingual information that matters rather than a requirement that creators fill their
documents with guesses or information that is irrelevant to the intended use/users of the
articles. [[JATSMLExamples]]

2.2.3. JATS Should Stay In It's Lane
JATS is a source for many presentations, not a display format.

It is the goal of JATS to enable users to encode the information that will be needed
to create a variety of interchange and presentation formats from the markup in the JATS-
encoded document. It is not the intent for JATS-encoded articles to be directly ingested
by typesetting, voice-synthesis, or web displays. So, for example, JATS provides tagging
for both short/unstructured and longer/structured annotations (to a graphic, for example)
to enhance accessibility. It does not position this information in the locations that are
appropriate for end user display; the assumption is that the application creating the display
will put the information where it is needed for display. (For example, some guidelines
suggest that HTML's “Long Description” should be on a separate HTML page from the
content. That content is embedded in the JATS-encoded article but can be separated when
creating a web version of the document.)

Similarly, many page layout tools require heading levels be explicit in their input source;
first level heads must have a different tag from second- and third-level heads. JATS uses
a containment hierarchy to store this information: the “title” of a “section” that is inside
only one other “section” would be displayed as a second-level head. It is the assumption
behind the design of JATS that the application providing the JATS-encoded content to that
typesetting system will convert the tagging to the style required by that system.

The JATS multi-language tagging includes some of the information described in the
W3C's “Internationalization Tag Set (ITS)”. For example, JATS enables users to encode
information that can be converted to ITS':

◆ translate,

◆ language information, and

◆ provenance.

JATS does not provide tagging for information that is specific to display tools or that is
unlikely to appear in published journal articles, such as:

◆ localization note,

◆ localization quality,

◆ allowed characters, and

◆ storage size.

3. I Don't Use JATS; Why Should I Care?

There are two things a non-JATS user might find of interest in how we addressed this new
requirement in JATS:

◆ a mechanism for adding significant functionality to a existing tag set without burdening
existing users, and

I Don't Use JATS; Why Should I Care?

113

◆ some of the requirements for multilingual documents.

The days when every markup project started with the development of a bespoke
vocabulary are far behind us. Shared vocabularies dominate markup applications, often
vocabularies that are long lived and used by a wide variety of users. The proponents
of many of these vocabularies have evangelical tendencies; they want more and more
users to adopt their vocabulary, and in order to make that possible they continually enrich
the vocabulary both to better meet the needs of current users and to meet the needs of
possible future users. It is important to do this is in ways that do not sabotage the utility of
the vocabulary for current users.

Writers in so-called “minority languages”, writers who often find that it is useful to use
multiple languages to communicate, are gaining traction. More and more of them are
rejecting the premise that in order to publish they must use one of the majority languages
as must their readers.

While it seems unlikely that other communities will find that the structures JATS developed
to meet this need will be exactly what they need, we hope that others will find our analysis
helpful as you figure out how to accommodate these new requirements and new users.

4. JATS Multi-language Mechanism (@lang-group)

The basic idea is to enable JATS creators to encode structural and metadata components
of their document (sections, paragraphs, figures, quotations, tables, etc.) as being the same
content, differing only in language. JATS can also encode the relationship between the
same content in different languages. (For example: The original author wrote the same
content in two or more languages. This section is present twice: one is the original and the
second is its translation by a human translator. This section is present twice: one is the
original and the second was translated by computer translation.)

In the JATS 1.4, same-content structures in different languages can be flagged as
belonging to the same “language group”. JATS defines “language group” as the collection
of objects that are the same in content and vary in language. JATS calls alternate language
versions of the same content “variants”, and they are collected into a language group by the
values of the @lang-group attribute. [[JATSMultilang]] The members of a language group
may appear in widely separated places within a document.

Functionality dealing with language groups in an online environment might include: allowing
the user to choose whether to see only a particular language version or all the variants,
and allowing a user to find an article in a search using a filter specifying the language(s).
For example, in an article in both English and Spanish, a user could opt to see only the
Spanish, only the English, or both. This would be a function of the display application
supported by the JATS markup. [[JATSMultilang]]

How an attribute builds language groups: [[JATSMultilang]]

◆ The value of the @lang-group attribute is an IDREF, and the attribute uses that value
to logically tie the members of a language group (all the variants) together. The variant
content objects in the language groups are bound together only by the IDREF value.

◆ The value of the @lang-group must be the same for all members of a language group
to support processing.

◆ The value of the @lang-group must be the @id attribute value of one of the variant
objects in the group. (It does not matter which object, and there is no significance to the
selection of which @id is used.)

JATS Multi-language Mechanism (@lang-group)

114

Once the objects in the language group are identified the creator can provide a variety of
information about each of them. It would be surprising if the language of each were not
provided, although it is not required. In addition, information about the source of the content
and the expected uses may be provided.

4.1. Influence of SGML's “Architectural Forms”: Giving Credit where Credit is Due

This mechanism will look very familiar to old-timers in the markup community. Using
a bundle of attributes to attach information to document structures that can govern
processing is at the heart of SGML's “architectural forms”. Architectural forms are key to
HyTime and DITA, and have been used in many other markup environments.

While the JATS multi-language structures do not use architectural forms as defined in
the 1990s, their design was heavily influenced by them. (Most of the publications about
SGML architectural forms are no longer available. The best reference we have found that is
available is “A Reader's Guide to the HyTime Standard” [[HyTime]].

5. A Few Examples

These examples are provided to show the reader a few of the types of information that
can be encoded using the JATS multi-language mechanism. See the information sources
discussed below in “Documentation for All This” for more detail.

5.1. Simple Example of a Language Group

Here is the same product note three times (In English, in French, and in Canadian French):
[[JATSMLExamples]]

<p id="mug-665" lang-group="mug-665" xml:lang="en">Portable
 battery life varies by product. Enjoy
 all-day battery life by regularly placing mug on its
 included charging coaster.</p>

 <p lang-group="mug-665" xml:lang="fr">L'autonomie de la
 batterie varie en fonction des produits.
 Prolongez l'autonomie de votre mug en le plaçant
 régulièrement sur son support de chargement
 inclus.</p>

 <p lang-group="mug-665" xml:lang="fr-CA">L'autonomie de la
 pile portable varie selon les produits.
 Profitez d'une pile qui dure toute la journée en plaçant
 régulièrement la tasse sur le sous-verre de
 recharge inclus.</p>

5.2. Did a Person or an Algorithm Translate This?

Three short paragraphs are part of a language group. Note the differences in the treatment
of the onomatopoeia (the speech of the hen). The paragraph in English is the original
variant: [[JATSMLExamples]]

<p xml:lang="en"
 id="LRH-4011" lang-group="LRH-4011" lang-source="author"
 lang-variant="original">Carrying the sack of Wheat, she trudged
 off to the distant mill. There she ordered the Wheat ground into
 beautiful white flour. When the miller brought her the flour

Influence of SGML's “Architectural Forms”: Giving Credit where Credit is
Due

115

 she walked slowly back all the way to her own barnyard in her
 own <named-content content-type="quote">
 picketty-pecketty</named-content> fashion.</p>

The the same paragraph was translated into Welsh by a human translator:
[[JATSMLExamples]]

<p lang-group="LRH-4011" xml:lang="cy"
 lang-source="translator" lang-variant="translation">
 Dan gario'r sach Gwenith, trampiodd i ffwrdd i'r felin bell.
 Yna, gofynnodd am falu'r Gwenith yn flawd gwyn, hyfryd. Pan
 ddaeth y melinwr â'r blawd iddi, cerddodd yn araf yn ei hôl
 i'w beudy ei hun, yn ei ffordd <named-content
 content-type="quote">piceti-peceti</named-content>
 ei hun.</p>

The the same paragraph was also translated into Welsh by Google Translate:
[[JATSMLExamples]]

<p lang-group="LRH-4011" xml:lang="cy"
 lang-source="custom" lang-source-custom="GoogleTranslate"
 lang-variant="translation">
 Gan gario'r sach Gwenith, ymlwybrodd i'r felin bell. Yno hi
 a orchmynnodd y tir Gwenith yn flawd gwyn hardd. Pan y daeth
 melinydd â'r blawd iddi cerddodd yn araf yn ôl yr holl
 ffordd iddi iard ysgubor ei hun yn ei ffasiwn
 <named-content
 content-type="quote">piced-pecedi</named-content>
 ei hun.</p>

5.3. Not Everything Should be Translated

Sometimes some text should not be translated at all, even when the entire containing
structure is translated, for example, a discussion (in multiple languages) of a phrase in a
specific language or a localization concern. This is an editorial, not a technical decision,
and must be flagged by the creator.

Here is the original, with the @translate attribute set to “no” to block translation of the
onomatopoeia: [[JATSMLExamples]]

<p xml:lang="en" id="LRH-4011" lang-group="LRH-4011"
 lang-variant="original">Carrying the sack of Wheat, she trudged
 off to the distant mill. There she ordered the Wheat ground into
 beautiful white flour. When the miller brought her the flour
 she walked slowly back all the way to her own barnyard in her
 own <named-content content-type="quote" translate="no">
 picketty-pecketty</named-content> fashion.</p>

Here is the translation, following that instruction: [[JATSMLExamples]]

<p lang-group="LRH-4011" xml:lang="cy"
 lang-variant="translation">Dan gario'r sach Gwenith,
 trampiodd i ffwrdd i'r felin bell. Yna, gofynnodd am falu'r
 Gwenith yn flawd gwyn, hyfryd. Pan ddaeth y melinwr â'r
 blawd iddi, cerddodd yn araf yn ei hôl i'w beudy ei hun, yn

Not Everything Should be Translated

116

 ei ffordd <named-content xml:lang="en"
 content-type="quote">picketty-pecketty</named-content>
 ei hun.</p>

6. Doesn't This Mechanism Entail a Lot of Overhead?

Well, it can entail a lot of overhead, or none at all; that depends on the needs and
inclinations of the user. Users creating content can totally ignore it. Content creators who
have multilingual content, that they want to encode as multilingual content, are “required”
(which means encouraged) to include one metadata attribute (@lang-grouping) to flag
that they are using this mechanism. In addition to the @lang-grouping attribute, users
are expected to use as much, and only as much, of this infrastructure as is appropriate to
their content and expected use. The minimum would be tagging all language groups with
the @lang-group and @xml:lang attributes. Content receivers are not required to accept
documents that use the multi-language mechanism, and can easily identify documents
that use it tagging by looking for the @lang-grouping flag on the <processing-meta>
element. Content receivers that do accept and process multilingual documents using the
JATS multi-language mechanism can use the @lang-grouping flag to identify those
documents that need this additional level of processing.

7. Documentation for All This

JATS is well documented. In fact, we have been told that JATS is over documented (we
disagree). The official documentation of JATS is the JATS standard, which states the rules
of the vocabulary. Like most standards, it does not contain explanations, advice to the user,
or examples. In our opinion, the main value in the standard is the fact that it exists.

The JATS multi-language mechanism is clearly and helpfully described both in the JATS
non-normative documentation (Tag Libraries) and in several articles and conference
papers:

◆ The most complete introduction is the discussion called “Multiple Languages/scripts”
inside the “Common Tagging Practice” section of each of the JATS Tag Libraries.
This essay includes: discussion of the requirements for multiple language encoding,
a description of the basic JATS 1.4 attribute and element mechanism, definitions and
restrictions for all the multilingual attributes, an explanation of other JATS changes
that were made to accommodate multilingual encoding, and numerous examples.
[[JATSMultilang]]

◆ The “Attribute” Chapter of each JATS 1.4 Tag Library documents each of the multi-
language attributes individually (with definition, values, and examples). [[JATSTaglib]]

◆ Encoding multilingual bibliographic references is described in “Multiple Language
Citations” subsection of the “References” subsection of the “Common Tagging Practice”
section of each of the JATS Tag Libraries. [[JATSMLCit]]

◆Many additional multi-language attribute examples are provided by B. Tommie Usdin
in her JATS-Con 2025 paper “Tagging multi-lingual documents in JATS 1.4: Some
Examples”. [[JATSMLExamples]]

◆ There have been presentations on the JATS multi-language mechanism at JATS-Con
([[NewinJATS1.4], [ImproveMLJATCon], [JATSMLExamples]]), in the NISO Update series
[[JATSUpdt]], and a paper about it was published in “Science Editing” [[ImproveML]].

For full technical details, examples, and discussions of usage we refer the reader to these
sources.

Doesn't This Mechanism Entail a Lot of Overhead?

117

8. Acknowledgements

The authors thank Bethan Tovey-Walsh for the translations into Welsh and her very helpful
discussion of the issues in translating literary texts in general and onomatopoeia in specific.

Bibliography

[JATSTaglib] National Center for Biotechnology Information (NCBI), National Library of
Medicine (NLM): Journal Archiving and Interchange Tag Library NISO JATS Version 1.4
(ANSI/NISO Z39.96-2024). October 2024. Archiving: https://jats.nlm.nih.gov/archiving/
tag-library/1.4/, Publishing: https://jats.nlm.nih.gov/publishing/tag-library/1.4/, Authoring:
https://jats.nlm.nih.gov/articleauthoring/1.4/

[JATSMultilang] National Center for Biotechnology Information (NCBI), National
Library of Medicine (NLM): Journal Archiving and Interchange Tag Library
NISO JATS Version 1.4 (ANSI/NISO Z39.96-2024) Multiple Languages/scripts.
October 2024. Archiving: https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/tag-
multi-lang-articles.html, Publishing: https://jats.nlm.nih.gov/publishing/tag-library/1.4/
chapter/tag-multi-lang-articles.html, Authoring: https://jats.nlm.nih.gov/articleauthoring/
tag-library/1.4/chapter/tag-multi-lang-articles.html

[JATSMLCit] National Center for Biotechnology Information (NCBI), National Library
of Medicine (NLM): Journal Archiving and Interchange Tag Library NISO
JATS Version 1.4 (ANSI/NISO Z39.96-2024) Multiple Language Citations.
October 2024. Archiving: https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/
tag-cite-multi-lang.html"> [https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/tag-
cite-multi-lang.html], Publishing: https://jats.nlm.nih.gov/publishing/tag-library/1.4/
chapter/tag-cite-multi-lang.html, Authoring: https://jats.nlm.nih.gov/articleauthoring/tag-
library/1.4/chapter/tag-cite-multi-lang.html

[JATSStd] American National Standards Institute/National Information Standards
Organization (ANSI/NISO): ANSI/NISO Z39.96-2024. JATS: Journal Article Tag
Suite, version 1.4. Baltimore: National Information Standards Organization. https://
groups.niso.org/higherlogic/ws/public/download/31415/ANSI-NISO-z39.96-2024.pdf

[HyTime] The Editors of ISO/IEC 10744:1992 2nd Edition: Charles Goldfarb, Information
Management Consulting, Steven R. Newcomb, TechnoTeacher Inc., W. Eliot Kimber,
ISOGEN International Corp., and Peter J. Newcomb, TechnoTeacher Inc. A Reader's
Guide to the HyTime Standard. https://www.hytime.org/papers/htguide.html

[ITS2.0] Internationalization Tag Set (ITS) Version 2.0, W3C Recommendation 29 October
2013http://www.w3.org/TR/2013/REC-its20-20131029/

[NewinJATS1.4] D.A. Lapeyre: What’s New in JATS 1.4. In: Journal Article
Tag Suite Conference (JATS-Con) Proceedings 2025 [Internet]. Bethesda (MD):
National CentNational Center for Biotechnology Information (US); 2025. https://
www.ncbi.nlm.nih.gov/books/NBK611601/

[ImproveML] Vincent Lizzie: Improving Journal Article Tag Suite for Multilingual
Articles. Sci Ed. 2022; 9: 2:169–178. DOI:https://doi.org/10.6087/kcse.285. https://
www.escienceediting.org/journal/view.php?number=291

[ImproveMLJATCon] Vincent Lizzi: Improving JATS for Multilingual Articles. Journal Article
Tag Suite Conference (JATS-Con) Proceedings 2022 [Internet]. Bethesda (MD):
National Center for Biotechnology Information (US); 2022. https://www.ncbi.nlm.nih.gov/
books/NBK579699/

Acknowledgements

118

https://jats.nlm.nih.gov/archiving/tag-library/1.4/
https://jats.nlm.nih.gov/archiving/tag-library/1.4/
https://jats.nlm.nih.gov/publishing/tag-library/1.4/
https://jats.nlm.nih.gov/articleauthoring/1.4/
https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/tag-multi-lang-articles.html
https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/tag-multi-lang-articles.html
https://jats.nlm.nih.gov/publishing/tag-library/1.4/chapter/tag-multi-lang-articles.html
https://jats.nlm.nih.gov/publishing/tag-library/1.4/chapter/tag-multi-lang-articles.html
https://jats.nlm.nih.gov/articleauthoring/tag-library/1.4/chapter/tag-multi-lang-articles.html
https://jats.nlm.nih.gov/articleauthoring/tag-library/1.4/chapter/tag-multi-lang-articles.html
https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/tag-cite-multi-lang.html
https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/tag-cite-multi-lang.html
https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/tag-cite-multi-lang.html
https://jats.nlm.nih.gov/archiving/tag-library/1.4/chapter/tag-cite-multi-lang.html
https://jats.nlm.nih.gov/publishing/tag-library/1.4/chapter/tag-cite-multi-lang.html
https://jats.nlm.nih.gov/publishing/tag-library/1.4/chapter/tag-cite-multi-lang.html
https://jats.nlm.nih.gov/articleauthoring/tag-library/1.4/chapter/tag-cite-multi-lang.html
https://jats.nlm.nih.gov/articleauthoring/tag-library/1.4/chapter/tag-cite-multi-lang.html
https://groups.niso.org/higherlogic/ws/public/download/31415/ANSI-NISO-z39.96-2024.pdf
https://groups.niso.org/higherlogic/ws/public/download/31415/ANSI-NISO-z39.96-2024.pdf
https://www.hytime.org/papers/htguide.html
http://www.w3.org/TR/2013/REC-its20-20131029/
https://www.ncbi.nlm.nih.gov/books/NBK611601/
https://www.ncbi.nlm.nih.gov/books/NBK611601/
https://doi.org/10.6087/kcse.285
https://www.escienceediting.org/journal/view.php?number=291
https://www.escienceediting.org/journal/view.php?number=291
https://www.ncbi.nlm.nih.gov/books/NBK579699/
https://www.ncbi.nlm.nih.gov/books/NBK579699/

[JATSUpdt] Tommie Usdin: Open Teleconference: JATS (Journal Article Tag Suite Update,
November 18, 2024. NISO. Audio recording (discussion with NISO’s Keondra Bailey),
https://niso.org/events/2024/11/opentelecon-jats

[JATSMLExamples] B.T. Usdin: Tagging multi-lingual documents in JATS 1.4: Some
Examples. In: Journal Article Tag Suite Conference (JATS-Con) Proceedings 2025
[Internet]. Bethesda (MD): National CentNational Center for Biotechnology Information
(US); 2025. https://www.ncbi.nlm.nih.gov/books/NBK611124/

Acknowledgements

119

https://niso.org/events/2024/11/opentelecon-jats
https://www.ncbi.nlm.nih.gov/books/NBK611124/

https://markupuk.org/

https://markupuk.org/

	Markup UK 2025 Proceedings
	Table of Contents
	Modular ixml
	1. Contents
	2. Introduction
	3. Requirements
	4. Naming and renaming
	5. The Structure of a Module
	6. Semantics
	7. Processing
	8. Example
	9. Example
	10. Example
	11. A Larger Example
	12. Other Possible Approaches
	13. Conclusion
	References

	From iXML to XSpec
	1. Introduction
	1.1. What is iXML?
	1.2. Why iXML?

	2. Learning iXML
	3. Testing an iXML grammar
	3.1. Eyeballing the output
	3.2. Schema validation
	3.3. Diff
	3.4. XSpec
	3.4.1. Using XSpec to test XSLT
	3.4.2. Using XSpec to test iXML

	3.5. What testing revealed

	4. Automation
	5. Conclusion
	Bibliography
	A. Invisible XML Grammar for a DOCTYPE declaration
	B. Chronological List of Past Papers on Invisible XML

	XForms Extended
	1. Introduction
	2. The problem
	2.1. Issue #1: Cumbersome layouts
	2.2. Issue #2: Complex logic
	2.3. Issue #3: The need for advanced JavaScript code

	3. The proposed solution:
	3.1. XForms code
	3.2. JavaScript and CSS code
	3.3. Extended XForms Components

	4. Weaknesses and Limitations
	5. What's next
	Bibliography

	Processing JSON with Template Rules
	1. Introduction
	2. Selecting the case study
	3. Converting the input XML to JSON
	4. Serializing the parse tree
	5. Generating the digest file
	6. Refining the digest
	7. Conclusions
	Bibliography

	Schema Test Suite
	1. Introduction
	1.1. Structural Validation vs. Schematron
	1.2. Schema Languages

	2. Schema Test Suite
	2.1. Unit Testing Methodology
	2.2. Test Cases
	2.2.1. Folder Directory Hierarchy
	2.2.2. Templates
	2.2.3. Passing XML
	2.2.4. Failing XML

	2.3. Implementation and Execution
	2.3.1. Tools and Libraries
	2.3.2. Execution Logic
	2.3.3. Reporting

	3. Conclusion
	3.1. Continuous Development
	3.2. Integration
	3.3. Accessibility

	Bibliography

	Design and Performance of a Corpus Scanner
	1. Introduction
	2. Tool Requirements and Features
	2.1. Easy to configure and run
	2.2. Convenient to provide inputs
	2.3. Produce multiple forms of report
	2.4. Combine multiple runs into a single report
	2.5. Robust against parse errors
	2.6. Extensible and Maintainable

	3. Implementation
	4. Memory Usage and Speed
	5. Parsing Errors
	6. Extensibility
	7. Future Work
	8. Conclusion
	A. Samples

	Surfing the web with XProc
	1. Introduction
	2. Enter Selenium
	3. Enter Invisible XML
	4. cx:selenium
	5. Security implications
	6. Next steps

	PrintCSS Meets LaTeX
	1. Introduction
	2. The Status Quo: Configuring Layouts in xerif
	3. PrintCSS and TeX
	4. Building a PrintCSS renderer
	4.1. Preliminary Considerations
	4.2. Parsing PrintCSS
	4.3. Generating an xml2tex Configuration

	5. Summary, Discussion and Future Work
	6. Appendix I: Supported PrintCSS Features
	7. Appendix II: Supported Standard CSS Features

	Adding new Cars to a Running Train
	1. What is JATS?
	2. Requirements and Constraints
	2.1. How Multi-language Documents are Presented and Stored
	2.2. Requirements and Non-Requirements
	2.2.1. Backwards Compatibility
	2.2.2. The Needs of the Few Must Not Burden the Many
	2.2.3. JATS Should Stay In It's Lane

	3. I Don't Use JATS; Why Should I Care?
	4. JATS Multi-language Mechanism (@lang-group)
	4.1. Influence of SGML's “Architectural Forms”: Giving Credit where Credit is Due

	5. A Few Examples
	5.1. Simple Example of a Language Group
	5.2. Did a Person or an Algorithm Translate This?
	5.3. Not Everything Should be Translated

	6. Doesn't This Mechanism Entail a Lot of Overhead?
	7. Documentation for All This
	8. Acknowledgements
	Bibliography

