
Markup UK 2019 Proceedings

Markup UK 2019 Proceedings

Markup UK 2019 Proceedings

4

Markup UK 2019 Proceedings

Organisation Committee
Geert Bormans
Tomos Hillman
Ari Nordström
Andrew Sales
Rebecca Shoob

Programme Committee
Achim Berndzen - <xml-project />
Abel Braaksma - Abrasof
Peter Flynn - University College Cork
Tony Graham - Antenna House
Michael Kay - Saxonica
Jirka Kosek - University of Economics, Prague
Deborah A. Lapeyre - Mulberry Technologies
Adam Retter - Evolved Binary
B. Tommie Usdin - Mulberry Technologies
Norman Walsh - MarkLogic
Lauren Wood - XML.com

Thank You
Evolved Binary
Saxonica
oXygen XML Editor
letex Publishing Services
Mercator
Exeter
Deborah A. Lapeyre
B. Tommie Usdin
Bethan Tovey
Adam Retter
Jirka Kosek
Norman Walsh
...and our long-sufering partners

Sister Conferences

Markup UK 2019 Proceedings
by B. Tommie Usdin, Debbie Lapeyre, Karin
Bredenberg, Jaime Kaminski, Peter Flynn, Marco
Geue, Gerrit Imsieke, Andy Bunce, Alain
Couthures, Andreas Tai, Michael Seiferle, Robin La
Fontaine, Nigel A Whitaker, John Lumley, Octavian
Nadolu, Tony Graham, Barnabas Davoti, Erik Siegel,
Cristian Talau, Liam R E Quin, Syd Bauman, and
Sandro Cirulli

Table of Contents
Beyond the brick, for the past in the future, you nd the archive! – Karin Bredenberg. Jaime Kaminski. 1
Sofware we have lost – Peter Flynn. 11
xprocedit, A Browser-Based Open-Source XProc Editor – Marco Geue. Gerrit Imsieke. 39
Generating documents from XQuery annotations – Andy Bunce. 47
XQuery for Data Workers – Alain Couthures. 57
subcheck Article MarkupUK London – Andreas Tai. Michael Seiferle. 71
An Improved dif3 Format for Changes and Conicts in Tree Structures – Robin La Fontaine. Nigel Whitaker. 87
<Angle-brackets/> on the Branch Line – John Lumley. 101
Taking Schematron QuickFix To The Next Level – Octavian Nadolu. 125
Accessibility Matters – Tony Graham. 135
Scrap the App, Keep the Data – Barnabas Davoti. 149
Documenting XML Structures – Erik Siegel. 157
XMLPaper: XML-based Conference Paper Workow – Cristian Talau. 171
Dispelling Myths About Markup Formats: When What Why Where – Liam Quin. 179
Validating selector – Syd Bauman. 187
XSpec in the Cloud with Diamonds – Sandro Cirulli. 197

vii

Beyond the brick, for the past in the future,
you nd the archive!

Karin Bredenberg, National Archives of Sweden

Jaime Kaminski, University of Brighton

Abstract

The statement that XML is dead[1] is as wrong as celebrating Christmas on midsummer night’s eve! At
least in our opinion. Imagine making an archival soup based on international standards using XML,
with one municipal archive, two regional archives, ve national archives and the European Commission’s
eArchiving Building block thrown into the mix. This is what we are going to attempt, let us set the stage
and take you through the recipe!

[1]https://developpaper.com/is-xml-dead/ is a starting point for getting more information regarding the
statment.

1

https://developpaper.com/is-xml-dead/

Archives

1. Archives
In our world the organisation responsible for saving the records of an organisational unit like documents or other artefacts
that gives us our history is the archive. The archives exist in diferent levels of our society, in companies, in municipalities,
in regions and at national levels as national archives. This means that the big diference between a library and an archive
is seen in the library being responsible for the printed word. Today when the records are digital records the challenges to
keep them has grown from taking care of paper to handling migration of records from obsolete formats, authenticity of
the record so its reliable and most of all making sure the record is readable in the future considering format and available
hardware.

2. Building Blocks
Let’s start with Connecting Europe Facility[2] and its Building Blocks[3], what are they? The European Union realise
that internet and digital technologies are transforming our world. A true statement. They also see is that the digital
landscape is becoming more diverse, creating challenges for cross-border interoperability and intercommunication.
Europe is about working together but, Europeans still face barriers when using (cross-border) online tools and services.
The implications are considerable. EU citizens can miss out on goods and services and businesses in the EU miss out on
market potential, while also the diferent governments in EU cannot fully benet from digital technologies. The EU has
therefore described the Digital Single Market[4] (DSM) through which it aims to overcome these challenges by creating
the right environment for digital networks and services to ourish. The DSM is not only achieved by setting the right
regulatory conditions, but also by providing cross-border digital infrastructures and services. So, to support the DSM,
the Connecting Europe Facility (CEF) programme is funding a set of generic and reusable Digital Service Infrastructures
(DSI), also known as Building Blocks. The CEF building blocks ofer basic capabilities that can be reused in any
European project to facilitate the delivery of digital public services across borders and sectors. Currently, there are eight
building blocks: Big Data Test Infrastructure, Context Broker, eArchiving, eDelivery, eID, eInvoicing, eSignature and
eTranslation. The main part of CEF is a Core Service Platform, provided and maintained by the European Commission.
Depending on the building block, the Core Service Platform may include technical specications, sample sofware and
supporting services (funding for the European Commission). The CEF building blocks ofer basic capabilities that can
be used in any European project to facilitate the delivery of digital public services across borders. The basis for the CEF
Building Blocks are interoperability agreements between European Union member states. The aim of the Building Blocks
is thus to ensure interoperability between IT systems so that citizens, businesses and administrations can benet from
seamless digital public services wherever they may be in Europe.

The Building block layers.

For each building block the European Commission provides a Core Service Platform which consists of three layers:

• At the core of each building block is a layer of technical specications and standards that have to be complied with;

• To facilitate the implementation of the technical specications and standards, a layer of sample sofware that complies
with them and is meant for reuse (for certain building blocks only);

• To facilitate the adoption of the technical specications and standards, a layer of services (e.g. conformance testing,
help desks, onboarding services, etc.) meant for use (which varies depending on the Building Block).

All this means that the Building Blocks can be combined and used in projects in any domain or sector at European,
national or local level.

2

eArchiving Building Block

[2]https://ec.europa.eu/digital-single-market/en/connecting-europe-facility

[3]https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/CEF+Digital+Home

[4]https://ec.europa.eu/digital-single-market/en

3. eArchiving Building Block
For the archives and others transferring information the newly set up eArchiving building block [5]is the important
component in protecting our history. The aim of eArchiving is to provide the core specications, sofware, training
and knowledge to help data creators, sofware developers and digital archives tackle the challenge of short, medium and
long-term data management and reuse in a sustainable, authentic, cost-ecient, manageable and interoperable way. The
core of eArchiving is formed by Information Package specications which describe a common format for storing bulk
data and metadata in a platform-independent, authentic and long-term understandable way. The specications are ideal
for migrating long-term valuable data between generations of information systems, transferring data to dedicated long-
term repositories (i.e. digital archives), or preserving and reusing data over extended (and shorter) periods of time and
generations of sofware systems. Next to the specications eArchiving ofers a set of sample sofware to demonstrate the
format in diferent scenarios and business environments, and consultancy in regard to long-term digital preservation risks
and their mitigation.

The eArchiving building block and its services and specications.

[5]https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eArchiving

4. Long-term preservation of information
Continuing from the specications in the building block XML has long been the go-to format for the long-term
preservation of information, mainly because it can structure information in a way that isunderstandable to both humans
and machines. There have been concerns and comments raised regarding Json taking over the role of XML. However, in
the archival setting even if JSon is easier to use as a programmer in the long term XML wins because readable elements
and attributes explaining the information or what we call content placed in the document. However, at the same time
XML needs to be used wisely with the correct element and attribute names to facilitate the understanding of the human
reading of the XML-document both now as well as in the future. There are also other formats used like tif and pdf but
for reuse of the information XML is the format to go to in most cases.

3

https://ec.europa.eu/digital-single-market/en/connecting-europe-facility
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/CEF+Digital+Home
https://ec.europa.eu/digital-single-market/en
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eArchiving

Use cases

5. Use cases
Our use case involves transferring information to diferent recipients. Information described with numerous ISO as well
as de facto standards, all built around XML, which can be used for the transfer, storage and dissemination of information.
Some of the most important use cases are shown in the following image.

The eArchiving use cases.

A short description of what we see in the image is that information is created in a system, the information is being exported
as a number of diferent documents which can be sent to an electronic archive, being used by a researcher, published on-
line, imported into a new system and so on.

6. Skill set
And with that setting of uses cases and need for reuse in a lot of ways we can only make the conclusion that a modern
archivist, or perhaps the more accurate title is information or records manager, needs to understand XML and more than
one standard for handling the information for which they are the caretakers. Besides the need for knowing a lot of diferent
technical languages there is also a need to speak the same language as the programmers who will aid you with creating
export and import tools. A challenge still not fully addressed in either community. The language challenge is something
all the diferent communities and professions working together need to start working with. A common solution is that
every work place and profession has their own language making cross-border professional exchange almost impossible
without a lot of extra meetings, things that can be avoided if a common vocabulary was agreed upon and communicated
to all professions. Look, for example, at the term ‘archive’ which means “to transfer records from the individual or oce
of creation to a repository authorised to appraise, preserve, and provide access to those records”[6] in the archival setting
and the meaning “to store data oine.”[7] in the programmer and more technical setting. A unication is needed and
at the same time not easy to achieve due to the diferent professions lack of common foras for these kinds of discussions
(let’s not forget that not speaking to each other is more common than we would like to imagine).

[6]https://www2.archivists.org/glossary/terms/a/archive

[7]https://www2.archivists.org/glossary/terms/a/archive

4

https://www2.archivists.org/glossary/terms/a/archive
https://www2.archivists.org/glossary/terms/a/archive

Standards, de facto standards and specications

7. Standards, de facto standards and specications
Jenn Riley’s Visualization of the Metadata Universe[8]has been around for a while, but still gives the best overview of
standardsused in the cultural sector, archives, libraries and museums. In the image there are numerous standards are
displayed in the context of their function and where they are used.

The visualization of the Metadata Universe by Jenn Riley. (The recommendation is to look on-line)

Almost all standards on the metadata map created by Jenn Riley have an XML format available described with an DTD
or an XML-schema. For the XML-schemas both the ISO standard RelaxNG as well as W3C XML-schema formats are
used. The choice depends solely on the skills of the creator of the schema and at the same time it’s also common to ensure
that all diferent type of schemas are available so transformations from RelaxNG to XML-schema and vice versa is ofen
used. DTD are still around due to the fact that old sofware is still in use and they are based upon using a DTD.

The most common way to use the standards is to write a specication which describes a prole for our use case of the
standard which then in its turn are implemented in the setting you are operating. The best way of describing the use of
proles is the standard METS (more about that later) which requires the user to write a prole describing how it is used.

[8]http://jennriley.com/metadatamap/

8. eArchiving Building block Specications
The story of eArchiving Building Block specications originates at work starting at the National Archives of Sweden
and being enhanced in the E-ARK project[9]. The project delivered 7 draf specications which all built upon creating
proles of standards and de-facto standards, these can be split into 4 specications describing proles of the standard
METS and one for electronic records management, one for geodata and nally one for using the SIARD [10]standards.
The project ended but no one wanted the work to be a usual project result, forgotten and not used so to make sure
these specications to not stop evolving the project created the “Digital Information LifeCycle Interoperability Standards
Board” (DILCIS Board[11]). The board took over the specications and have during the project E-ARK4ALL[12] (which
are responsible for setting up and maintaining the eArchiving Building Block) brought them to a stabilised state and
started the development of more specications. A work carried out together with the experts of specic content so it’s
the experts writing the specications. The board is set up with currently eight members and are charged with the task of
handling the specications. The Board is at the same time the core producers of specications to the eArchiving Building
Block.

[9]https://eark-project.com/

[10]https://www.bar.admin.ch/bar/en/home/archiving/tools/siard-suite.html

[11]https://dilcis.eu/

[12]https://e-ark4all.eu/

9. The eArchiving reference model setting
When we consider the European Commission’s new eArchiving Building Block and that its evident that at its core are
specications based upon formats expressed in XML. The entireBuildingBlockrevolves around transfers of information
where the nal transfer is to the archives, but nothing prevents these transfers occurring earlier in the information
lifecycle. The e-archive is built upon the Reference Model for an Open Archival Information System (OAIS Reference
Model)[13]and its use of information packages, the Submission Information Package (SIP), the Archival Information

5

http://jennriley.com/metadatamap/
https://eark-project.com/
https://www.bar.admin.ch/bar/en/home/archiving/tools/siard-suite.html
https://dilcis.eu/
https://e-ark4all.eu/

The eArchiving reference model setting

Package (AIP) and the Dissemination Information Package (DIP). There are more parts described in the reference model
but the core part used in the specications are the information packages.

Access

Data
management

Archival
storage

Administration

AIPAIPSIP

DIP

Descriptive
information

Descriptive
information

P
ro

du
ce

r

C
on

su
m

er

Queries

Orders

Query
responses

Ingest

Preservation planning

Management

The OAIS reference model.

The diferent packages in the OAIS reference model are within the eArchiving Building Block described or get their
inventory or manifest stated with the Metadata Encoding and Transmission Standard (METS)[14] which uses XML as
the format for creating the readable text. (For the AIP it might be a format internal to the archival system you are using
but that is another paper.) This way both machines and humans can understand the package (we do have some extra
principles which aid with what constitutes a package). METS itself is a rather open standard with only one mandatory
element being a structural description of the package. The standards also demand the creation of a prole for the exact
use case describing the use of the standard and its elements and attributes. The prole for the eArchiving Building Block
requires besides the METS XML-schema an extension XML-schema and validation rules in Schematron. The diculties
occur when the common user doesnot know how to validate the XML in combination with Schematron due to poor
or no knowledge of either XML or Schematron and not having access to a person with the knowledge. We must not
forget that Schematron adds its owncomplexities when it is combined with a non-relaxNG schema. A complexity that
can be overwhelming when you don’t know XML at all or just a basic understanding. This gives that numerousguidance
documents need to be created ranging from how to write XML to how to use a specication. And all this since you cannot
count on the person implementing the specication and its validation to have the appropriate background knowledge.

The eArchiving building block and the diferent specications building up a Information Package. In the image the three
diferent types of packages is seen.

6

Content specications

[13]https://www.iso.org/standard/57284.html

[14]http://www.loc.gov/standards/mets/

10. Content specications
Well, we now have a package described in XML, we need some content and maybe images, PDFs and information
structured in XML that extends the information recorded in the package. This means we have one or more XML-
documents to describe the information and its structure, and another XML-document to describe the whole package
with all the content, but not the structure of the information itself. We can even handle a relational database in this way,
extracting it in XML format and then packaging it in a SIP for transfer to the archive. Specications of content are at the
heart of the eArchiving Building Block, and the number of specications is growing steadily. There are lots of diferent
kinds of information that need to be described, luckily there are many specications for describing information in XML,
so there is no need to reinvent the wheel.

The eArchiving building block specications.

In the image the content is described with the acronym CITS which means Content Information Type Specications.
Currently there are three available as described previously.

• A specication for electronic records management systems (ERMS), the specication uses a XML-schema as the format
and is based upon several available records management standards which in their turn don’t have a common XML-
format available which means the ERMS specication is the connection between the diferent standards and the export
of information from a ERMS.[15]

• A specication for geospatial data which uses the ISO standard for preservation of geospatial data in combination with
the regulation within the union regarding geospatial data “the Inspire directive”. In the specication a description
of geospatial data and what it is found together with how the description of the data is carried out since the
geospatial system themselves export information in readable formats but lack descriptions making the information
understandable in the future.[16]

• A specication for how to place a relational database exported with the format SIARD in an information package.
The format has been developed by the Swiss Federal Archives and is now a part of the DILCIS Boards responsibilities.
The SIARD format is based upon export of the database as XML and several tools exist which aids with the task.[17]

[15]https://github.com/DILCISBoard/E-ARK-ERMS

[16]https://github.com/DILCISBoard/E-ARK-Geodata

7

https://www.iso.org/standard/57284.html
http://www.loc.gov/standards/mets/
https://github.com/DILCISBoard/E-ARK-ERMS
https://github.com/DILCISBoard/E-ARK-Geodata

Basic soup recipe with a twist

[17]https://github.com/DILCISBoard/SIARD

11. Basic soup recipe with a twist
We started with you imagine the making of an archival soup based on international standards using XML, with one
municipal archive, two regional archives, ve national archives and the European Commission’s eArchiving Building
block thrown into the mix. So how do we get this soup to be the “perfect” soup? We use core specications based upon
XML that can be enhanced the further down or closer to the user you get thus making the work and transfer to an archive
a piece of cake.

Common IP specification

General SIP, AIP, DIP specification

Content Information Type
Specification

Business-specific
specification
(e.g. Healthcare)

Local
implementation

Generic

Detailed and
specific

The specication enhancement layers.

So our soup gets transformed into the set of use cases which is suitable for diferent kinds of users as well as diferent
kinds of information.

The specication user layers of adoption.

The image shows us that the closer to the information and the implementation you get the more demands is added to
make the information understandable in the future. We still are obliged to use the core set which means interoperability
is achieved and at the same time the users own needs is an addition to enhance the core set.

8

https://github.com/DILCISBoard/SIARD

Conclusion: Moving on from soup

12. Conclusion: Moving on from soup
The archival soup isn’t in fact a soup it’s a core set of common specications using a machine and human readable
language which makes it possible for one municipal archive, two regional archives, ve national archives and the European
Commission’s eArchiving Building block to transfer information, store the information for “innitive” time and deliver
it to all diferent kind of users wanting to use the information, use the information for researchers, building applications,
doing statistical reposts, prove who they are, all the things you can do with information. This is supported by the
advantages of XML and its way of being readable both by machine and humans. That the XML-document can be opened
in just a text editor means that it is easy to read our past both now and in the future. This means that the support for
XML needs to exist now and further down the road even if we in the archival community as XML users do not take
part in all working groups maintaining XML instead being more concerned about the standards, de factostandards or
specications based on XML so we can ensure the past being created now will be present in the future.

Bibliography
[MDU] Jenn Riley: Seeing standards: A visualization of the Metadata Universe. Design: Devin Becker2009-2010, Work

funded by the Indiana University Libraries White Professional Development Award. http://jennriley.com/
metadatamap/

9

http://jennriley.com/metadatamap/
http://jennriley.com/metadatamap/

Sofware we have lost
Peter Flynn

Abstract

Since the rst days of SGML, there has been a variety of sofware to parse, validate, analyse, format, store,
search, and extract the information. Some of this was what we now call Open Source, particularly the
smaller utilities, but the majority of applications were conventional commercial oferings.

In the course of time, many of these have become unavailable, for assorted reasons, with the result is that
some very useful systems have been lost, and replacements are not always as efective.

This research attempts to catalogue and analyse a collection of XML and SGML sofware that is either
of the market, or only available within a diferent product, and thus not accessible to users. The
objective is to see if there are still ways to shorten the distance between the bricks that are not otherwise
provided for.

11

Background

I am grateful to the numerous people in University College Cork and elsewhere who stepped up with ofers of Windows
and other installer CDs when my carefully-preserved originals went missing, including (alphabetically) John Barrett, Roy
Cummins, Stephen Dineen, AV Drepe, Martin Fleming, Nick Hogan, Sinead Horgan, Steve King, Margaret Lantry,
Piaras MacEinri, Neil Nash, John O’Connell, Michael O’Halloran, Billy O’Rourke, Bereniece Riedewald, Joel Walmsley,
and Frank van Pelt. Thank you also to the SGML-era veterans who prompted me with the names, details, or disks of
long-forgotten products, especially Debbie Lapeyre, Lauren Wood, and Michael Sperberg-McQueen

1. Background
Before we had XML, we had SGML, which is the ISO standard techreport on which XML is based. By default, SGML
is pointy-bracket markup like XML…but in SGML almost everything can be redened, including the markup characters
themselves, and there are numerous options for additional features and for abbreviations and markup shortcuts to
minimise typing. Any changes to syntax or to the conguration value limits have to be made in a Declaration le, and
a DTD is compulsory on every document.

Notice the words to minimise typing. In the beginning, there was no sofware with an editing interface that could use
the DTD to provide a contextual menu of available element types; and the idea that the markup would be hidden from
the user was counterintuitive — if you couldn’t see the tags, how could you know what was marked?

In these early stages, therefore, markup was applied by typing it in a plaintext editor, so the essential piece of sofware
to begin with was the parser, not the editor, so that you could check that you hadn’t got something wrong. The term
parsing was ofen used to mean parsing-and-validating; 1 as there was no concept of well-formed tag validity in the sense
introduced with XML. There were many early parsers; among the most signicant were:

• ARC SGML (Almaden Research Center) originally by Charles Goldfarb; later developed by James Clark into sgmls
(see below)

• ASP SGML (Amsterdam SGML Parser), still available article
• Exoterica by Sam Wilmott (later included in Omnimark)
• the parser in Framemaker+SGML by Lynn Price
• a parser for Boeing (internal only) by Greg O’Connell and Debbie Lapeyre
• Mark-It! by Jean-Pierre Gaspard
• sgmls by James Clark, the only one still in widespread use; redeveloped as nsgmls for SP, and now as onsgmls to handle

XML for OpenSP

Other sofware developed rapidly, spurred partly by the adoption of SGML for some military documentation in the US
and elsewhere, and partly by its growing use in publishing, research, and academia. Editing sofware included:

• Arbortext ADEPT (through several name changes (eg Epic), now PTC Arbortext Editor)
• SofQuad Author/Editor and the editors based on it, HoTMetaL (for HTML) and later, XMetaL (for XML)
• STiLO Document Generator, with Arbortext one of the few to handle mathematics in a general-purpose SGML editor
• Emacs with psgml-mode
• epcedit, a free SGML and XML editor from tkSGML
• the Euromath Editor, an EU project built on the GriF editor2

• Siemens Nixdorf InContext
• Citec MultiDoc Translating Editor
• Microstar Near&Far Author for Word and Near&Far Designer, a graphical DTD editor
• GriF SGML Editor
• Richard Light’s SGML Tagger (OUP), a memory-resident monitor for MS-DOS editors.
• Corel WordPerfect had a built-in SGML editor
• Sema Write-It! (using Mark-It! as the parser)

Documents also need processing in some way: adding to a database, putting on the Web, mining it for data, or converting
it for a formatting system for publishing. Conversion or processing (transformation) systems included:

• AIS Sofware Balise
• DFN DAPHNE (VMS only; converted to TeX)
• EBT (later Inso) DynaText trainable converter from Word to SGML
• James Clark’s Jade (using DSSSL) can convert to TeX and other formats
• Exoterica Omnimark (XTRAN)
• Microsof SGML Author for Word, despite its name, this was not an editor, but a converter into and out of Word

1In fact, in the authors’ description of the Amsterdam SGML Parser article, the only instances of the term validation are in the formal references to
validation services in the SGML standard itself.
2The editor is reputedly being resuscitated and rebuilt using INRIA’s Thot structured editor.

12

Sofware

There were several standalone viewers, especially for vertical-market applications, but few general-purpose browsers.
As with editors, some used SGML-syntax stylesheets to format the display; others used proprietary stylesheet syntax.
Formatting systems for printed output typically produced Postscript (pre-PDF days). Some handled SGML input direct,
others via an established conversion route; output was formatted using TeX or a proprietary typesetting engine.

• Advent 3B2 typesetter
• EBT DynaWeb NT server for documents converted with DynaText
• Adobe Framemaker+SGML typesetter (FTC’s original had no SGML support)
• LaTeX, typesetter, usually via transformation through Omnimark, Balise, Jade, or similar
• Citec MultiDoc Pro Publisher standalone browser
• Panorama Viewer, an SGML plugin for the Mosaic and Netscape browsers; also the standalone Panorama Publisher
• Arbortext Publisher typesetter

There was far more sofware available which is outside the scope of this report — some of it is now either uncompilable
or uninstallable, or was in any case incomplete or experimental at the time. A signicant amount was normal commercial
sofware which has sufered the conventional fate of being superseded, falling out of use, or being abandoned when
the company failed or was taken over. There are extensive lists of both free and commercial applications in Robin
Cover’s SGML/XML Web Pages [http://xml.coverpages.org/index.html], and some of the SGML Conference CDs have
a considerable amount of freely-distributable and commercial-sample sofware in subdirectories..

Other categories not covered here include design tools, search engines, and databases. The only three of these of which
this author has direct experience (noted below) were Microstar’s Near&Far Designer, Tim Bray’s PAT search engine in
Section 2.5.2 [31], and the SGML DARC document management database in Section 2.5.3 [31].

2. Sofware
The sections below refer to those programs and systems which were either installed and [re-]tested for this paper or were
tested and documented in the author’s book book. The following symbols are used:

• a checkmark beside an item denotes that it installs and executes correctly

• an X denotes that the sofware exists but cannot be compiled or installed correctly, so testing it was not possible

• a circle denotes that the sofware could be installed but either would not execute, or executed but with unresolvable
errors

• an empty box denotes the sofware is no longer available

The platform used for testing Windows and MS-DOS sofware was Windows XP SP2 running on a Dell Optiplex
745.3 The objective was to emulate as reasonably as possible the oce environment circa 1998–2002. A modern Linux
distribution (Mint 19) was used for the few UNIX or GNU/Linux utilities. The procedure for testing was:

1. Install the sofware from original media where possible, or from zip archives from network repositories

2. Run the relevant program[s] from the Start menu or from an installed icon (a few command-line procedures were
run from the Windows Command terminal)

3. Open or otherwise invoke the sample SGML document (see Appendix A [34]), performing any necessary
prerequisites such as making the DTD or SGML Declaration available to the program

4. Exercise the features or functions of the sofware to check they operate correctly (eg Insert Element, Edit Attribute,
Validate, etc)

5. Record details of success or failure

2.1. Parsers and validators
Three of the products listed in ???TITLE??? [12] were tested.

2.1.1. ARC SGML #

This sofware was installed from the copy distributed on the SGML’97 CD-ROM. However, the INSTALL and
readme les referenced binaries that were not included, and attempting to parse any of the test suite resulted in

3An attempt was made to use Windows 95 but this satised the requirements for only the oldest programs.

13

http://xml.coverpages.org/index.html
http://xml.coverpages.org/index.html
http://xml.coverpages.org/index.html

Parsers and validators

references to components that were not recognised. However, the vm2 program did appear to execute, but failed to
parse the sample le, returning error messages related to capacities, and it was not clear how the values from the SGML
Declaration could be implemented within the time available.

2.1.2. ASP SGML #

Several attempts were made to compile this parser from the source code available in Sgml.tar.z but the changes in
the C libraries over the years mean that signicantly more work is needed to recode those parts which currently generate
errors. While this would be an interesting excursion for a student coding project, there is probably little to be gained by
resuscitating the sofware for production use when onsgmls fulls the same function.

2.1.3. sgmls #

Derived from ARC SGML, the parser was rewritten as part of the Jade DSSSL processor (now OpenJade). This is a
standalone (commandline) parser with options (among others) for:

• suppressing the default ESIS output (a markup-and-data stream) when just a validity check is required
• limiting the number of error messages
• switching to XML mode (onsgmls only)
• specifying the SGML Declaration to use

sgmls is also used by the sgmlnorm normalizer to expand SGML shortcuts; and by the Emacs/psgml editor for validation.
The 32–bit Windows binaries used in this test were installed from the SGML’97 CD-ROM.

C:\SGMLS\> sgmls -s sgml.dec recipe.sgml

In the case of this, and most command-line parsers, a null return means no errors were found in the DTD or document.

The companion sgmlnorm utility was also exercised: the normalization lls in all the missing parts of the SGML
document by applying the rules from the SGML Declaration on what end-tags may be omitted and if attributes may be
minimized (and much else). In this case the following output was obtained:

C:\Documents\> sgmlnorm sgml.dec recipe.sgml
<RECIPE>
<TITLE>Chocolate fudge</TITLE>
<COMMENT>My mother's recipe</COMMENT>
<INGREDIENTS>
<INGREDIENT QUANT="1" UNITS="LB">sugar
 </INGREDIENT>
<INGREDIENT QUANT="4" UNITS="OZ">chocolate
 </INGREDIENT>
<INGREDIENT QUANT="?" UNITS="PT">cream
 </INGREDIENT>
<INGREDIENT QUANT="1" UNITS="OZ">butter
 </INGREDIENT>
</INGREDIENTS>
<METHOD>
<LIST>
<ITEM>Mix the ingredients in a pan
 </ITEM>
<ITEM>Heat to 234?F, stirring constantly
 </ITEM>
<ITEM>Pour into greased flat tin
 </ITEM>
<ITEM>Allow to cool before cutting
 </ITEM>
</LIST>
</METHOD>
<SOURCE>Adapted from the Good Housekeepings cookbook</SOURCE>
</RECIPE>

14

Editors

Note that by default, SGML is case-insensitive, and that the pretty-print indentation of the original document means
that normalizing the omitted end-tags has introduced a white-space node into the character data content of the
ingredient and item elements.

2.2. Editors

Of the editors in ???TITLE??? [12], Document Generator, SGML Tagger, Euromath Editor, and Write-It! were not
reviewed either due to lack of sofware or incompatibilities.

2.2.1. ADEPT #

The Arbortext editor is perhaps the best-known industrial SGML and XML editor. It was (is) a very large suite, including
the Document Architect program for compiling DTDs and FOSI stylesheets, and Publisher which output typeset-quality
formatting (printing from the editor itself was more oce-quality). Setting up the suite takes a long time, especially
if many custom DTDs and stylesheets need to be installed: this is not a simple editor but a fairly complete document
production system — the Author/Editor and Panorama Publisher setup had similar capabilities, but the editor could also
be installed and running in a few minutes, which is not the case with ADEPT. It was also expensive: in 1992, the present
author was quoted $5,000 per seat and no discounts.

Figure 1. ADEPT showing the Insert Element dialog (lef); and editing mathematics (right)

A strong feature ofADEPT was mathematics (in an earlier incarnation, Arbortext also sold a commercial version of TeX,
and the TeX engine remained inside their products for many years). The graphical interface to mathematical editing (see
Figure 1 [15]) was a de facto industry standard which was only challenged by LyX and more recently Word’s Equation
Editor.

As with Author/Editor and RulesBuilder, the principle was to separate the business of editing — the job of professional
technical writers — from the business of maintaining the DTDs, many of which were from industrial vertical markets

15

Editors

and subject to strict data controls over who could change what and when and how. One interesting approach, not seen
in any other product of the era, was that afer a DTD was successfully compiled for the rst time, the system would ask
for the element type names used for:

• the document title, title block, and title page
• normal paragraphs
• graphics, and attribute names for assorted graphical manipulation features
• divisions (chapter, section, subsection, etc)
• lists (numbered/bulleted/denition)
• gure blocks and page breaks

This was then used to construct an initial FOSI stylesheet so that when a new instance of the document type was created
or opened, it would at least be styled with the basic structure rather than presented as an amorphous slab of markup
and text. The stylesheet could then be edited to rene the formatting (see Figure 2 [16]): the styling interface was
comprehensive but required substantial training to use.

Figure 2. Document Architect creating styles for a document type

2.2.2. Author/Editor #
RulesBuilder #

This was one of the most widely-used editors: easy to use and fuss-free in operation. Its interface later became familiar to a
much wider audience as it formed the basis for the HTML editor HoTMetaL and the XML editor XMetaL. Installation
was from CD.

Author/Editor would immediately open an arbitrary SGML le, but would only enter full synchronous typographic
mode if the DTD was known and precompiled. For documents using previously unencountered document types, it acted
as a plaintext editor until provided with a compiled DTD.

16

Editors

Figure 3. Author/Editor editing a DocBook document (lef); RulesBuilder compiling a DTD (right)

For full use, the separate RulesBuilder program was needed. The assumption was that the DTD was a corporate asset
that would not be available to an end-user, only to an administrator; and even outside that type of managed framework,
it would be undesirable for arbitrary users to be able to modify what should be a stable DTD. The administrator would
compile the DTD to a proprietary .rb le which could be given to an end-user.

2.2.3. Emacs + psgml #

GNU Emacs is a plain-text editor and work environment by Richard Stallman, with a macro and programming facility
using a dialect of Lisp, used extensively for the creation of add-on packages. Emacs 20.7 for Windows 95 and NT was
installed from the GNU archive [fp://fp.gnu.org/old-gnu/emacs/windows/20.7/].

The psgml-mode package by Lennart Stain is an Emacs major mode for SGML and XML which parses the DTD
(a requirement in SGML). At the time it provided the only free and unencumbered fully-featured SGML editor.4
Installation of various versions of psgml were tested to nd one which was compatible with the 20.7 version of Emacs,
as at that time there was no package library synchronisation. Version 2.12 worked with the removal of the compiled form
of the psgml-other.elc le, which was the only code mismatch. Installation would normally be via the Emacs
package system,5 or by using the Makefile in a downloaded psgml distribution, or (in the test case under Windows)
by copying the les to a suitable directory manually.

4Arguably, it still does, and for XML as well.
5The package has recently and inexplicably been withdrawn from the current repositories.

17

ftp://ftp.gnu.org/old-gnu/emacs/windows/20.7/
ftp://ftp.gnu.org/old-gnu/emacs/windows/20.7/

Editors

Figure 4. Emacs with the sample document before and afer normalization

A setting in the user’s .emacs conguration le can make Emacs invoke psgml-mode automatically for les ending in
.sgml or other extensions. The DTD is tokenised and the result used to guide the user’s selection of element types via
a menu or with TAB completion, and the use of attributes via a subsidiary window. Manipulation of markup in context
as with any other syntax-directed editor is done from the menus or with keystroke abbreviations.

2.2.4. epcedit #

This is an SGML (and later, XML) editor from tkSGML by Heinz Detlev Koch and Roman Halstenberg. While it is
no longer under development, it can still be downloaded but it is a 32–bit system only and requires a licence key. The
program uses the Tcl/tk language (v8.3) which is included in the distribution. The sample document was opened without
problems (see Figure 5 [19])

18

Editors

Figure 5. epcedit with the sample document and with the sample stylesheet

There is a built-in stylesheet system which is reasonably comprehensive except that it does not allow for the formatting
of generated content, and attribute values cannot be included in generated content. The result of styling the sample
document is also shown on in Figure 5 [19]

2.2.5. InContext #

InContext is one of a small number of SGML editors more suited to data applications, with the interface using boxes for
each element (see Figure 6 [20]). Navigation is provided in a side-panel, using a 3D arrangement of stacked, nested
buttons to represent the document tree. This is a good way to display documents where data elements occur frequently
and text is minimal, but its usability as an editor for writing continuous text is severely limited. As the only available
disk was an evaluation copy, it was not possible to open the sample document, only the samples provided by the vendor.
Microsof Oce (specically, Excel, to handle tables) must be installed before installing InContext.

19

Editors

Figure 6. InContext editing a CALS manual

Access to editing in Mixed Content is possible, despite the box design: selecting an element type like para lets you split
the content into nodes, and empty elements are shown as symbols.

Other sofware with a related interface includes Microsof Oce InfoPath (2003), and the Citec’s MultiDoc Pro
Translating Editor

2.2.6. MultiDoc Pro Translating Editor #

This is a companion program to the MultiDoc Pro Browser and Publisher, sharing the same interface and the same style
les. The objective is to let a translator ll in a parallel document structure with the translated text (target) occupying the
same element types in element content as the original document (source).

Installation is from CD, with a choice of this program, the browser/publisher, and some ancillary programs. Opening
the sample recipe document meant using the normalized version (created with sgmlnorm or epcedit) because MDP does
not handle les using missing end-tags or attribute minimization.

20

Editors

Figure 7. MultiDoc Pro Translating Editor editing a recipe (original formatted above; translation in
boxes below)

The similarity between the target interface and the one used by InContext is immediately apparent in Figure 7 [21].
The advantage of using their existing browser and stylesheet apparatus to present the source document presumably meant
that adding the parallel hierarchy below was unproblematic, except that in Mixed Content, any subelements may be in a
diferent order in the target because diferent languages have diferent ways of expressing things.

2.2.7. Near&Far Author for Word #

From the same stable as Near&Far Designer (see Section 2.5.1 [30]), this is not a standalone editor but an add-on
for Microsof Word. It adds Import and Create menu entries for the Word interface which parallel the Open and New
operations. It uses whatever DTD you select, without the need to precompile it, and it uses the same graphical navigation
as the companion Designer program (see Figure 8 [22]).

21

Editors

Figure 8. Near&Far Author for Word editing a Word document with named styles

However, as with every other markup tool that interfaces with Microsof Word, there is a prerequirement that the Word
document uses exclusively Named Styles, as this is the only way in which element type names can be bound to recognised
spans of text in the document.

As can be seen from the screenshot, the oating window with the document structure from the DTD can be used to
guide formation of the document, with the selected element type mapping to a named style, which in turn provides
the formatting…which can of course be changed by the author without afecting the markup, although the formatting
toolbar is usually disabled to prevent meddling.

An export function saves the document as SGML. In this way a circular conversion can be obtained, much like Microsof’s
SGML Author for Word but with the benet of executing from within the editor.

22

Editors

2.2.8. GriF SGML Editor #

The GriF SGML Editor has one of the least complex interfaces to editing SGML. It provides a synchronous typographic
screen in the manner of a wordprocessor, with conventional le management and editing controls. In addition to being
popular in business and publishing applications, GriF was the interface used in the Euromath editor.

As with most editors in this class, compiling the DTD and creating a stylesheet are tasks administered separately from
the editor, using the Application Builder program. However, (so far as this author is aware) uniquely to GriF, the
screen controls still allow the user to impose local (non-element-based) styles on a document. This approach allows
almost complete word-processor-style control with independence from the markup: a stylesheet may cause a particular
element to default to bold type, for example, but you can override that manually by using a diferent font, for example,
or changing the size, on an entirely independent basis, without afecting the element markup in any way. The efect
is achieved internally by storing Processing Instructions to record the ad hoc styles within the markup, so that these
operator-controlled styles are not tied to an element.

Figure 9. GriF’s SGML Editor showing text-entry location for the title of section 3.1.1

By default, locations on the screen where character data content is required are identied by gray squares, so text entry
for very prescriptive DTDs can be made almost as simple as a form-ll application (many other editors also do this but
require scripting).

GriF was an early implementer of the feature during text entry that the Enter key performs an element split; that is, it
creates a new instance of the current element in element content, if the DTD permits this — for example, pressing Enter
at the end of a para would create another para. If the current content model is at an end (all required elements are
present, and no further optional elements are wanted), the TAB key moves to the next location in the document model
where input is possible.

2.2.9. WordPerfect+SGML #

WordPerfect was for many years the dominant wordprocessor, especially in the MS-DOS period. Reputedly even WP’s
own engineers regarded the character-cell version as the real WordPerfect, and superior to the GUI version. However,

23

Editors

embedded inside the Windows version (8) was a real, fully-edged SGML editor and stylesheet system, providing
synchronous typographic editing of SGML documents for the price of a wordprocessor, well below the entry-point for
the larger SGML-only editors.

Figure 10. WordPerfect compiling a DTD and creating a stylesheet

Compilation requires choosing the correct character map les for whatever is expressed in the SGML Declaration, but
otherwise it is fairly tolerant of the settings, and adjusts them to suit itself. This produces what WP calls a logic le,
which can then be used to create a stylesheet (template, see Figure 10 [24]) which becomes available along with the
document type of the DTD and appears in the wordprocessor’s SGML menu (the normal Open/New functions only
work for wordprocessor documents).

24

Processors

Figure 11. WordPerfect editing SGML

2.3. Processors

Of the systems in ???TITLE??? [12], Jade is not covered here.

2.3.1. Balise #

Balise was known as the Swiss Army Knife of SGML. It can act as a parser and validator, transformation programming
language, document manipulator, outliner, pretty-printer, and much else. It consists of a high-level programming
language which in efect acts as an API to the document. The interface is the command-line compiler/interpreter.

Unusually (uniquely) it also provides access to the DTD, both logically and syntactically, so that the requirements of the
DTD can be queried during document processing; for example nding what other element types are valid at the location
of the current one. It also provides access to some non-ESIS parts of the document structure, such as the start and end
locations of marked sections.

2.3.2. DAPHNE #

SGML-to-LaTeX converter for VAX/VMS from the German Research Network (DFN) based on the QWERTZ DTD
created by the Institute for Applied Information Technology (FIT) at the German National Research Centre for
Computer Science (GMD). As far as is known, this is no longer available.

2.3.3. DynaText #

There are three components to the DynaText system: DynaTag, which models conversions from Word to SGML;
DynaText proper, a system for creating eBooks; and DynaWeb, a web server for dynamic publishing of the eBook
documents.

25

Processors

DynaTag displays a Word le with named styles, and graphically lets the operator give a mapping to the desired SGML
element, as shown in Figure 12 [26]. Text can be split, combined, omitted, and grouped (providing containment for
lists, for example). A common use was to create an intermediate SGML le which would then be transformed by (eg)
Omnimark or Balise to the nal form. Once the initial mapping was established on one document, additional documents
that followed the same style could be added, and the mapping rened. Eventually, the accumulated knowledge could be
used on entire directories of documents of one pattern for bulk conversion.

Figure 12. DynaTag conguring a Word document for conversion to SGML

DynaText itself could take arbitrarily large SGML documents (perhaps produced by DynaTag), and use an SGML-based
stylesheet to render them on-screen as dynamic eBooks, with full-text searching, including Boolean operators and the use
of the markup to guide the search. The system was in widespread use in industry and in technical, literary, and academic
publishing, and was very inuential on later developments (DSSSL, CSS, XSL:FO).

DynaWeb was a HTTP server for Windows NT, performing a similar function to DynaText but serving HTML generated
on-the-y. This meant that fast-changing documents (sourced in Word) could be pushed through a workow starting
with conversion in DynaTag, and once validated, served immediately to the next request.

2.3.4. Omnimark #

Until the appearance of XSLT, Omnimark was a frequent choice for SGML conversions. It contained a pattern-matching
language which enabled transformation between SGML and non-SGML formats (down-translation), between non-
SGML and SGML formats (up-translation), and between arbitrary text formats (cross-translation).

26

Formatters, including browsers and servers

Figure 13. Fragment of Omnimark code showing transformation to LaTeX

down-translate

global stream temp

element ABSTRACT
 output "%n\begin{abstract}%n%c%n\end{abstract}"

element ACRONYM
 set buffer temp to "%c"
 output "%g(temp)\index{M}{%g(temp)}"
 when attribute remap isnt specified
 output "\acro{%g(temp)}{%v(remap)}"
 when attribute remap is specified

In the example in Figure 13 [27], the %c emits the element content (equivalent to XSLT’s apply-templates);
%n is a newline; %g dereferences a bufer; %v dereferences an attribute. A streaming feature meant the document did
not have to be read into memory in its entirety; a value not yet encountered in document order (but known to occur)
could be referenced, but not dereferenced until the end of processing, by which time the desired value would have been
encountered and set as a referent).6

For a brief period in the late 1990s the product was made available without charge, but this was later abandoned. The
sofware is still available in a much more advanced version for XML and is widely used in publishing workows.

2.3.5. Microsof SGML Author for Word #

Despite the name, this is not an authoring editor. It was (perhaps still is) a plug-in converter from Word to SGML and
back. In tests conducted for an earlier review, it was able to convert circularly: from Word to SGML, edit the document,
convert from SGML back to Word, edit the document, lather, rinse, repeat…losslessly book.

Admittedly it took considerable conguration, but astonishingly, it worked. This was intended to allow a non-SGML
person to author a document, have the publications staf convert it and edit it, and then convert back to Word and hand
it back to the author to carry on writing or editing, again and again until ready. Microstar’s Near&Far Author for Word
provides a similar facility, but embedded within the Word interface itself.

2.4. Formatters, including browsers and servers
Of the items in ???TITLE??? [13], 3B2 and Arbortext Publisher are not covered here.

2.4.1. Panorama Publisher and Viewer #

The Panorama Free plugin for Netscape was many end-users’ rst sight of SGML, although if properly set up, they would
hardly notice the diference except for the superior formatting. When a Panorama user browsed or followed a link to
an SGML document, the plugin (or standalone version) would expect to nd two les called (exactly) catalog and
entityrc on the server in the same directory as the SGML le. The catalog contained entries resolving the Formal
Public Identier in the document’s DOCTYPE declaration to a downloadable DTD in the normal way of catalogs:

PUBLIC "+//Silmaril//DTD Recipes//EN" "../recipe.dtd"

This allows Panorama to download the DTD. The entityrc le contains entries matching the FPIs in the catalog
and providing the names of the stylesheet[s] and navigator[s].

PUBLIC "+//Silmaril//DTD Recipes//EN"
 DOCTITLE "recipe,title"
 STYLESPEC "Standard" "recipes.ssh"
 NAVIGATOR "Contents" "recipes.nav"

6Very large documents with very high numbers of such referents typically caused a brief but audible rattling at the end of processing as the disk drive
actuator arm repeatedly sought and wrote the data from whatever temporary location had been created during processing.

27

Formatters, including browsers and servers

Per-document variants of the stylesheets and navigators can be specied in the instance by using Processing Instructions:

<?STYLESHEET "NewStyle" "cookbook.ssh">
<?NAVIGATOR "WebVersion" "webrecipes.nav">

Figure 14. Panorama Publisher creating styles for a document

For a large DTD (eg DocBook, TEI, and many industrial schemas) the process of creating the stylesheet is lengthy,
the same as it would be for CSS today, but the stylesheet interface is entirely graphical and very easy to use (see
Figure 14 [28]).

Opening SGML either locally or over the web ofered a signicant advantage: the browser obeyed the stylesheet
formatting, so you were no longer at the mercy of the web browsers’ feeble implementations of CSS; the downside
was that in-browser scripting (eg VBScript or Javascript) were not available within Panorama, so it was restricted to
classical document-server applications (nonetheless extensive). The biggest advantage, however, was never really taken
up: hypertext. Panorama implemented HyTime techreport, so it could handle bidirectional linking, multi-headed (drop-
down) links, and — most importantly — you could apply links via the browser without needing write-access to the
document because they were stored in your own local le which you could publish on the web, so that other people
opening the document could reference your le and see all the links take efect.

2.4.2. FrameMaker+SGML #

FrameMaker was another long-time standard for publishing, and had the ability to work with SGML documents since
Adobe took it over in the mid 1990s, when it was aimed at the industrial structured-document formatting market. As
with other editors, the DTD has to be compiled, in this case to an EDD le, and then a stylesheet created, before any
editing or formatting can take place. The early interface for this was forbiddingly complex (see Figure 15 [29]).

28

Formatters, including browsers and servers

Figure 15. FrameMaker+SGML creating styles for a newly-compiled DTD

While the system was popular with typesetters, its use with SGML was troublesome for many, with tweaks and
adjustments required, and concerns about the way in which SGML was exported, especially as its own (MIF)
compatibility export format was very successful. Like ADEPT, it had the ability to apply non-structural tweaks afer
formatting, before pre-press, to adjust visual details not provided for in the code.

2.4.3. MultiDoc Pro Publisher #

MDP used the same mechanisms and le structures as Panorama (see Section 2.4.1 [27]), so les prepared for one
system could be used in the other.

29

Other sofware

Figure 16. MultiDoc Pro Publisher viewing a document created in Panorama Publisher

It also implemented the Occurrence Density Display of search results (familiar to modern users as the right-hand bar in
a search in some web browsers, giving ne horizontal lines at proportional locations in the height of the window to the
length of the document) for extensive search features including the TEI Pointer syntax.

2.5. Other sofware

2.5.1. Near&Far Designer #

A companion to Near&Far Author for Word (see Section 2.2.7 [21]), Designer was a graphical interface to DTD
creation and management. It had a simple and efective drag-and-drop paradigm to create element types, add attributes,
and establish content models, using symbols to represent the syntax of declarations (eg EMPTY, #REQUIRED, and the
punctuation of content models). Whole chunks of element content could be clicked and dragged around the document
model while working to nd an optimal way of representing the document.

30

Other sofware

Figure 17. Near&Far Designer’s view of the sample Recipe DTD and the DocBook3 DTD

There were a few drawbacks: importing a DTD meant it had to be flattened to a single le — problematic for a heavily
modularised DTD like the TEI; it also meant that re-exporting it would lose any conditional parts that had been excluded
by the use of Parameter Entities. While it worked well for smaller structures, it was not generally used for industrial or
technical DTDs — with the exception that document type designers used it very extensively (and some still do) for the
quality of the display, rather than its constructional modelling abilities, partly because the way in which the tree was
represented seemed to be recognised by otherwise non-technical clients as immediately comprehensible.

2.5.2. PAT #

At the time, PAT was claimed as the only native SGML database product incollection. It was created to provide
indexing search for the Oxford Dictionaries project at the University of Waterloo, and later commercialised by OpenText
Corporation. PAT was available for SunOS 4.1.3 (this author’s platform in those days) and was installed for the CELT
project for searching their TEI corpus of Irish writing. It continued in use until the platform failed in a lightning strike
in 2003 (resuscitation is currently ongoing, as this was the world’s ninth web server).

PAT’s main advantages were the ease of ingestion of a new corpus (basically a single vast, monolithic SGML document),
and the speed of a search. Signicant scripting was needed at CELT to turn the KWIC format output into a fully-
referenced page for the web, as it meant revisiting each hit to look up the element types needed to compose a reference,
and then again to retrieve the reference points themselves, resulting in a slower-than-optimal return, but acceptable in
those days.

2.5.3. SGML Darc #

The SGML Document Archive from the KTH in Stockholm is perhaps not strictly a native SGML database, but provides
some search and extraction facilities. The system was installed from two 3½" oppy disks without problems.

31

Conclusions

Figure 18. SGML DARC searching a document

The system requires preparation by compiling the DTDs and the stylesheets to be used for the documents to be stored.
Ingesting the documents also requires details of which items are to be indexed, and how, so it can be a lengthy task.
The indexing, however, is very robust, and retrieval is fast. For a large repository (archive) of documents, having them
dynamically formatted is a big advantage, because incoming additions to the same DTD would appear completely
consistently.

The display engine was later developed by Synex and SofQuad as Explorer and later Viewport, which in turn informed
Sofquad’s Panorama (viewer and publisher).

3. Conclusions
The structured-document sofware world has moved on signicantly since the virtual replacement of SGML with
XML. Some of this is due to improvements in hardware, especially in speed and capacity, and in sofware capability
and compatibility (or at least interoperability), and in language development, particularly Java and Javascript. XML
deliberately cut out a lot of facilities from SGML which were underused or added complexity for little gain — the Design
Goals of the XML Specication emphasise ease of use and simplicity techreport. The number of people (and companies)
using XML is much larger than it ever was for SGML, so there is probably more sofware available to meet the demand.
With better frameworks and raised awareness, vendors, developers, and programmers have generally been paying more
attention to usability, so installing and using current sofware is easier and more reliable than it was in the days of Windows
95/XP and SGML. Modern applications tend to make less fuss, a lesson learned from the so-called Web 2.0 paradigm
which emphasises obviousness. So have we learned anything else?

• Reports of the death of the command line are greatly exaerated. People still use it, and its availability in OS X and
Windows 10 means that programs originally restricted to UNIX or GNU/Linux are now available on any platform.
Most users may not need it, but developers, administrators, and other technical users do, especially for scripted
document management functions and for the bulk processing of documents in a workow.

• People do still use SGML. Several consultancies, including the author’s, have publishing clients still maintaining SGML
systems, for a variety of reasons.

32

Some stuf has been gained.

• Lots of the sofware did still install and execute, which was a surprise. Of those which failed, some were due to faulty
media (having been kept for several decades) and some to the OS environment. The clock had to be reset to 1998 for
some of the MS-DOS utilities, and there was one unresolved oddity in executing RulesBuilder, which consistently
gave a Windows Divide by zero or Overflow error.

3.1. Some stuf has been gained.
1. DTD/Schema resolution has improved. SGML applications tended to be rather helpless about where to look for the

DTD, with each vendor having a diferent idea of where the right place was. Catalogs xed most of that problem,
but required care and feeding, and Owners were sometimes careless about naming, spelling, and punctuation. XML
Catalogs are an improvement, and with the Public Identiers now less used, most sofware seems to look in the
document folder for the System identier unless otherwise instructed; or at least it asks for it instead of crashing with
an error message.

2. There is more consistency. The web interface paradigm, which was still in its infancy in 1995, is now the dominant
method of interacting with general users — people, even non-computer-users, are expected to know that you click on
things to see more — in the same way that oce sofware is expected to work like Word and Excel. Breaking dominant
patterns like these needs extraordinary changes and extraordinary benets, and the new paradigm of everything being
clickable, and not necessarily coloured blue and underlined, is an opportunity to ensure that the underlying XML
is used for consistency.

3. The move to using XML as the storage format for both Open/Libre/Neo Oce and Word has been a sea-change in
making documents programmatically accessible

4. The creation of XPath and XSL (both T and FO) has brought about huge improvements in expressing addressing
and programming transformations

5. The lessons learned in usability from end-user interfaces like the Panorama/Synex/Citec-type navigation and stylesheet
creation windows mean we now have much better facilities for creating in-app navigation and styling tools

6. There seems to be far less reinvention of the wheel now, in that many more applications re-use, or build on the shoulders
of, existing schemas and DTDs, rather than inventing new ones every time. Writers and speakers have constantly
warned about the risks of corporate hubris in writing everything from scratch rather than adopting or adapting a
close-match common vocabulary and structure — while at the same time extolling the virtues of modularity and
extensibility ???.

3.2. Some stuf has been lost.
1. Deprecating the Formal Public Identifier was probably a good move, but using a web URI is nearly as bad. If the

GCA had realised what they had in the ISO 9070 Registry, they could have made a big diference. Formal ownership
of Names is important.

2. psgml risks being lost because of the introduction of nxml-mode, which handles only RNG, and has a very limited
control set, making it virtually unusable as a text-document editor

3. Although the family-tree hierarchical box diagram representation of the schema or DTD tree is common in many
XML editors, none of them yet appears to match the design, clarity, and ease of use of Near&Far Designer

4. The use of XML in the web browser has never properly been supported by the browser-makers, for the exact same
reasons as the original HTML wasn’t. It has to some extent been saved by Saxon/CE and Saxon/JS, but the browsers
themselves are a lost cause

5. Open Source soware (then usually just called free) is no better at surviving three decades than commercial sofware. In
fact, commercial sofware may have the edge, in that it came in boxes, with manuals, CDs, dongles, licence keys, and
other stuf, so it got put on a shelf or into a cupboard.

However, most (but not all) web sites acting as repositories for the free sofware have long since disappeared; but so
have almost all of the corporate web sites of the commercial sofware.

What is particularly pernicious is that when the owner[s] of a popular and much-used commercial product diversify
(or, sadly, die), and it is then sold to another company, the buyers usually knows roughly what they have bought — the
rst time it happens. But when those buyers are themselves bought, the third owner has less knowledge and interest.
By the time it happens again, and maybe again, a once-reputable product is now owned by a manufacturer of children’s
toys, and has no idea why it also sells a structured-document editor. Let the market decide only works in the textbook
economic circumstances of perfect knowledge. In the Real World™ where everything is kept under wraps, nothing
is safe.

33

Sample SGML document

6. Hypertext linking in the HyTime sense never took of. The Panorama-style browsers demonstrated that it was not
only possible but easy to use, and anyone who has taught HTML or had to deal with novice designers will know that
there is demand for multi-headed and bidirectional links.

A. Sample SGML document
This was le recipe.sgml.

<!doctype recipe system "recipe.dtd">
<recipe>
 <title>Chocolate fudge</title>
 <comment>My mother's recipe</comment>
 <ingredients>
 <ingredient quant='1' lb>sugar
 <ingredient quant='4' oz>chocolate
 <ingredient quant='&frac12;' pt>cream
 <ingredient quant='1' oz>butter
 </ingredients>
 <method>
 <list>
 <item>Mix the ingredients in a pan
 <item>Heat to 234&deg;F, stirring constantly
 <item>Pour into greased flat tin
 <item>Allow to cool before cutting
 </list>
 </method>
 <source>Adapted from the Good Housekeepings cookbook</source>
</recipe>

1. The DTD used in the sample document
This was le recipe.dtd.

<!ELEMENT recipe - - (title,comment?,ingredients,method,source?)>
<!ELEMENT title - - (#PCDATA)>
<!ELEMENT comment - - (#PCDATA)>
<!ELEMENT source - - (#PCDATA)>
<!ELEMENT ingredients - - (ingredient+)>
<!ELEMENT ingredient - o (#PCDATA)>
<!ATTLIST ingredient quant CDATA #REQUIRED
 units (g|Kg|dl|l|oz|lb|pt|cup|0) #REQUIRED>
<!ELEMENT method - - (para|list)>
<!ELEMENT para - - (#PCDATA)>
<!ELEMENT list - - (item+)>
<!ELEMENT item - o (#PCDATA)>
<!ENTITY deg CDATA "°">
<!ENTITY frac12 CDATA "½">

2. The SGML Declaration used for the sample document
This was le sgml.dec.

<!SGML "ISO 8879:1986"
--
 Document Type Definition for the HyperText Markup Language
 as used by the World Wide Web application (HTML DTD).

34

The SGML Declaration used for the sample document

 NOTE: This is a definition of HTML with respect to
 SGML, and assumes an understanding of SGML terms.

 If you find bugs in this DTD or find it does not compile
 under some circumstances please mail www-bug@info.cern.ch
--

CHARSET
 BASESET "ISO 646:1983//CHARSET
 International Reference Version (IRV)//ESC 2/5 4/0"
 DESCSET 0 9 UNUSED
 9 2 9
 11 2 UNUSED
 13 1 13
 14 18 UNUSED
 32 95 32
 127 1 UNUSED
 BASESET "ISO Registration Number 100//CHARSET
 ECMA-94 Right Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"
 DESCSET 128 32 UNUSED
 160 95 32
 255 1 UNUSED

CAPACITY SGMLREF
 TOTALCAP 150000
 GRPCAP 150000

SCOPE DOCUMENT
SYNTAX
 SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30 31 127 255
 BASESET "ISO 646:1983//CHARSET
 International Reference Version (IRV)//ESC 2/5 4/0"
 DESCSET 0 128 0
 FUNCTION RE 13
 RS 10
 SPACE 32
 TAB SEPCHAR 9
 NAMING LCNMSTRT ""
 UCNMSTRT ""
 LCNMCHAR ".-"
 UCNMCHAR ".-"
 NAMECASE GENERAL YES
 ENTITY NO
 DELIM GENERAL SGMLREF
 SHORTREF SGMLREF
 NAMES SGMLREF
 QUANTITY SGMLREF
 NAMELEN 34
 TAGLVL 100
 LITLEN 1024
 GRPGTCNT 150
 GRPCNT 64

FEATURES
 MINIMIZE
 DATATAG NO
 OMITTAG YES
 RANK NO
 SHORTTAG YES
 LINK

35

Sofware and documentation available

 SIMPLE NO
 IMPLICIT NO
 EXPLICIT NO
 OTHER
 CONCUR NO
 SUBDOC NO
 FORMAL YES
 APPINFO NONE
>

B. Sofware and documentation available
This is a list of all the material accessible. It is being made available to those who are prepared to act as custodians of
what — in some cases — may be the world’s last executing or readable copy.

• Advent 3B2 SGML v.2 manual only

• Arbortext ADEPT and Document Architect, 5.4.1 3½" diskettes and docs, trial licence

• SofQuad Author/Editor 3.5 with RulesBuilder (DTD compiler), manuals and CDs

• AIS Sofware Balise 3.1 Reference Manual, Installation Note (2), Tutorial (2), Programmer’s Guide, 3×3½" diskettes,
parallel-port dongle (required)

• DFN DAPHNE User Manual 3.0 (in German) Deutsches Forschungsnetz Report 51 (April 1988).

• KTH SGML DARC on 2×3½" diskettes, experimental version with manual

• Arbortext EPIC, boxed, CDs and docs, CPUID licence

• EBT DynaText, DynaTag, and DynaWeb Document Preparation, Features, Introduction, Publisher’s Guide,
Customising, Server, Online Publishing Guide, Publishing Setup, InSted Users Guide; CDs

• EMT EuroMath Users Guide v.2

• Adobe FrameMaker+SGML 5.1.1, boxed, manuals, evaluation copy. This list is alphabetical by product name.

• GriF manuals and 3½" diskettes

• InContext InContext 3½" installation evaluation disk only, no licence key

• Citec MultiDoc Pro Publisher 2.5

• Microstar Near&Far Author 2.0 on 3½" diskettes (needs Word 6 or 7 only)

• Microstar Near&Far Designer on 3½" diskettes for Windows 3.1 or 95/XP

• Omnimark MS-DOS V2R5 manuals and 3½" diskettes

• SofQuad Panorama Viewer and Publisher manuals, 3½" diskettes and CD

• PAT 3.3 Users Guide (Heather Fawcett) New Oxford English Dictionary Centre, University of Waterloo, Canada

• PAT 3.4 Release Notes (OpenText Corporation)

• PAT Workstation Guide (Heather Fawcett) New Oxford English Dictionary Centre, University of Waterloo, Canada

• Quicksof PC-Write 3.02 manual and 5¼" diskettes

• Microsof SGML Author for Word documentation and 3½" diskettes

• OUP SGML Tagger documentation and 3½" diskette

• WordPerfect 8 with SGML, box only, but includes sofware on the CD from book

36

Sofware and documentation available

The following are books or other documents, not documentation, but the book has a CD with a collection of free
sofware.

• book

• book

• GCA SGML ’91 Conference Proceedings Providence, RI

• GCA SGML ’95 Conference Proceedings Boston, MA

• GCA SGML ’96 Conference Proceedings Boston, MA

• GCA SGML/XML ’97 Conference Proceedings Washington, DC

• GCA SGML/XML Europe ’98 Conference Proceedings Paris, France

• Mulberry The SGML Hornbook, paper, 8pp.

Some CDs are just conference papers, others are mixed sofware

• SGML ’97 Conference
• SGML/XML ’98 Conference
• XML ’99 Conference
• XML 2003 Conference
• Extreme Markup 2002
• Markup Technologies ’99
• SGML ’96 Power Tools
• SGML ’97 Power Tools
• SGML ’97 Power Tools
• XML ’99 Power Tools

Bibliography
[book] Text Processing and Typesetting with Unix. David Barron and Mike Rees. 1987. Addison-Wesley. Reading,

MA. 447. 0201142198.

[techreport] ISO. Information technolo -- Hypermedia/Time-based Structuring Language (HyTime). ISO 10744:1992.
International Organization for Standardization. Geneva. ISO 10744. 1992.

[article] “The Implementation of the Amsterdam SGML Parser”. Jos Warmer and Sylvia Van Egmond.
cajun.cs.nott.ac.uk/compsci/epo/papers/volume2/issue2/epjxw022.pdf. Electronic Publishing. July 1989. 2.
2. 65–90. 0894-3982.

[techreport] ISO. Standard Generalized Markup Language. ISO 8879:1985. International Organization for
Standardization. Geneva. ISO 8879. 1985.

[book] Peter Flynn. Understanding SGML and XML Tools. SGML Toolbook. Kluwer. Boston. 0792381696. May
1985.

[incollection] “Open Text Corp”. Seybold, Inc. DBMS Support of SGML Files. 3 October 1996. Bob DuCharme.
snee.com. http://www.snee.com/bob/sgmldbms.html. .

[techreport] Tim Bray, Jean Paoli, and Michael Sperberg-McQueen. Extensible Markup Language Version 1.0. XML.
World Wide Web Consortium. Cambridge, MA. 10 February 1998. 2. REC-xml-19980210. https://
www.w3.org/TR/1998/REC-xml-19980210.

[book] Eve Maler and Jeanne el Andaloussi. Developing SGML DTDs. from Text to Model to Markup. Developing
DTDs. Prentice-Hall. Upper Saddle River, NJ. 1999. 0-13-309881-8.

[article] “More About Custom DTDs”. W3C. https://alistapart.com/article/customdtds2/. A List Apart. 17 May
2005. 1534-0295.

[inproceedings] “Your Standard Average Document Grammar”. Not just not your average standard. Peter Flynn.
https://www.balisage.net/Proceedings/vol19/html/Flynn01/BalisageVol19-Flynn01.html. Balisage. Balisage
2017. 2017. Rockville, MD. . Balisage Series om Markup Technologies. Rockville, MD. 1947-2609.

37

Sofware and documentation available

[book] Charles Goldfarb, Steve Pepper, and Chet Ensign. SGML Buyer's Guide. Prentice Hall PTR. Upper Saddle
River, NJ. 1988. 0136815111.

38

xprocedit, A Browser-Based Open-Source
XProc Editor

Marco Geue, Hochschule Merseburg

Gerrit Imsieke, le-tex publishing services GmbH

Abstract

A visual XProc editor can serve at least two purposes: Communicating the process ow to non-
programmers and easing the notoriously steep learning curve for programmers.

An implementation using the Javascript framework JointJS and the in-browser XSLT 3 processor Saxon-
JS is demonstrated, along with the challenges of supporting XProc’s peculiarities in a generic graph
editing framework.

39

Introduction

1. Introduction
Visual programming languages have been around since the 1960s (see, for example, [Boshernitsan1998]). Visual
programming ofen uses the dataow programming paradigm, whose description XProc matches exemplarily:

Applications are represented as a set of nodes (also called blocks) with input and/or output ports
in them. These nodes can either be sources, sinks or processing blocks to the information owing
in the system. Nodes are connected by directed edges that dene the ow of information between
them. [BoldtSousa2012]

XProc is an “XML Pipeline Language” that was rst specied in 2010 [XProc1]. Its main purpose is the orchestration
of XML validation and transformation tasks that traditionally is done with scripting languages and tools such as Ant,
Make, shell scripts, or custom Java programs. Two advantages of XProc are: 1. Processing happens in main memory,
which means documents need not be serialized or even stored to disk between processing steps, and there are no penalties
in JVM startup times that are ofen associated with shell script or Makele orchestration. 2. There is no global state in
an XProc pipeline, a thing that is responsible for unexpected side efects in Ant, Make or Shell scripts and that makes
these programming languages unsuited for encapsulating possibly complex, re-usable functionality. XProc provides this
encapsulation and composability in its processing blocks, the so-called “steps.”

It has been argued that, given the advances in XPath 3.1 and XSLT 3.0, together with extension modules for dealing with
binary data, archives, HTTP APIs, etc., XSLT itself can now be used as a replacement for XProc pipelines [Quin2019].
While this is possible, XSLT does not ofer or enforce the degree of processing block encapsulation that XProc ofers and
that is a prerequisite for creating a visual editor that lets users assemble predened building blocks.

While XProc version 1.0 is primarily focused on processing XML documents, XProc 3.0 [XProc3] knows other
document types, namely text, HTML, and JSON, but also arbitrary binary les, as rst-class citizens. XProc’s main
applications so far are in publishing, and publishing these days requires handling of non-XML HTML and JSON,
in particular. XProc 3.0’s embrace of XPath 3.1 as its expression language and the XSLT and XQuery serialization 3.1
specication [Serialization31] are key enablers of its more “webby” capabilities.

XProc 3 programs continue to be written in XML syntax, at least this is the only serialization that is specied for 3.0.
When writing a browser-based editor, there probably needs to be some translation between the editor’s representation
of a pipeline, be it HTML, SVG, or JSON, and XProc’s XML syntax. As it will be shown, the solution presented in this
paper uses JSON data structures as the internal representation. Translation from XProc XML to this internal model and
back to XProc XML will be done with XSLT 3.0 in the browser and the XPath 3.1 functions that convert between JSON
and XML.

While the concepts of XProc seem straightforward at rst glance – processing steps whose outputs connect with inputs
of other steps – many users have reported diculties in writing actual pipelines. This is partly due to the syntax. The
concept of primary inputs and outputs and default readable ports (that is supposed to make pipeline documents less
verbose) contributes to this reportedly steep learning curve.

Having experienced graph editors that also know the concept of multiple ports per processing unit, namely the Blender
node editor [Blender] and the Lego Mindstorms visual programming environment, we at le-tex thought that connecting
existing XProc steps graphically will help overcome the initial learning diculties. It will also be useful to visualize
complex XProc pipelines since the XML representation ofers almost no visual clues (apart from adjacent primary
output/input ports) which steps are connected and how data ows through the pipeline.

2. Why is XProc Special?
XProc pipelines are basically directed acyclic graphs where the processing steps are the nodes and the input/output
connections are the edges. However, when we at le-tex rst tried to use generic browser-based graph editing frameworks
for XProc in 2014, we discovered that some fundamental XProc properties are not well supported, to wit: Multiple
docking ports per node, the distinction between input ports and options, the distinction between parameter and
document inputs, encapsulation/sub-graphs, and default readable ports.

Encapsulation, for example, is a powerful feature of XProc that allows to expose a potentially complex pipeline as an
apparently monolithic building block with a well-dened interface and opaque innards. Some graph editing frameworks
are able to fold a sub-graph so that it occupies less screen real estate. This is no genuine encapsulation though since it
requires folded sub-graphs to be copied and pasted rather than re-used. It does not allow the “write once, use many times”
approach that XProc’s language design supports so well.

This kind of encapsulation can be seen in other functional languages, too, and there are graphical editors for other
programming languages. What sets XProc apart is the ability of a processing step to produce many diferent outputs that

40

Selecting a Graph Editing Framework

don’t need to be consumed at once (or at all). This is useful for example when an encapsulated multi-step conversion
pipeline produces the conversion result on one port and intermediate results and validation reports for the input and
output on other ports. But this multi-valued, non-simultaneously consumed outputs deviate suciently enough from
common programming paradigms as to render visual editors for these languages unsuited for editing XProc.

Another peculiarity, XProc’s concept of “primary” and “default readable ports” is meant to make pipeline authoring less
verbose: The primary port of adjacent (in document order) steps connect implicitly, without the need to establish explicit
connections. On the two-dimensional canvas of a visual pipeline editor, however, there is no canonical document order.
Turning the 2-D representation into a linear XProc XML document, a task that the visual XProc editor needs to perform,
will become an optimization problem where a score needs to be attached to multiple possible serializations, rewarding
implicit connections via default readable ports. Alternatively, users of the graphical editor could be forced to make XML
document order explicit, a thing that we wanted to avoid for usability reasons.

This means that although XProc seems to be a perfect candidate for visual or dataow programming, its reliance on XML
serialization is an extra challenge when converting the natural graph to an XML representation that actually helps people
writing their rst pipelines.

One should acknowledge that a visual XProc programming environment will probably never replace actual coding. To
a large extent this is due to the amount of XSLT that many pipelines orchestrate. At least this is what our experience
as developers of the transpect framework [transpect] tells us. In most of our pipelines and libraries, the core tasks will
be performed by XSLT stylesheets. This is not a shortcoming of XProc but rather a feature. Apart from ripping apart
XSLT micropipelines, we don’t strive at replacing what we do in XSLT with XProc steps. We do see a huge benet in
continuing to use XSLT’s template matching and import mechanisms while encapsulating multi-step XSLT, zip/unzip,
HTTP request, validation, etc. pipelines in well-dened XProc step signatures with possibly multiple outputs.

3. Selecting a Graph Editing Framework
The criteria for selecting a graph editing framework were partly XProc-related, partly informed by current sofware
development trends and user expectations:

• browser-based

• interactive

• customizable

• provides ports

• supports encapsulation (hierarchical graphs)

• open source

A market research of graph editing frameworks, excluding those that don’t run in browsers, led to the following score
matrix:

GoJS JointJS NoFlo/FloHub vis.js yFiles
interactive yes yes no/yes yes yes
customizable yes yes yes yes yes
encapsulation no yes yes no no
ports no yes yes no yes
open source no yes yes/partly yes no

The Javascript framework that was selected for xprocedit is JointJS [JointJS]. Although it needs to be said that XProc
pipelines are, by far, not a graph type that is supported by JointJS out of the box, its basic support for graph editing, for
storing a graph model and for rendering a model as SVG has been very helpful.

NoFlo was a contender, but JointJS was chosen afer initial experiments were promising. NoFlo didn’t enter the
experimental phase, therefore we cannot say whether it would have required less customizing.

Auto-layout was not an initial requirement, but many of the frameworks support it and it will be put to use in particular
afer loading an existing XProc pipeline.

41

Solution

The choice of XSLT 3 and Saxon-JS for converting back and forth between the browser representation (be it SVG or
Javascript/JSON) and XProc XML was never really disputed. This is in spite of Saxon-JS not meeting the open-source
requirement that we imposed on the graph editing framework. The rationale for this is that we regard XSLT 3 in the
browser as a strategic choice of technology, and we want to support the only existing implementation. Graph libraries for
the Web, on the other hand, do too little for XProc-style graphs out of the box to justify an investment in a commercial
graph library.

4. Solution
The solution, called xprocedit [xprocedit], consists of an extension to the JointJS shape model in order to accommodate
diferent kinds of XProc steps (atomic, compound, multicontainer; standard/user-dened), primary/non-primary ports,
and options that act like input ports but are displayed diferently and can have default values.

More details are given in one of the author’s master’s thesis [GeueMT].

XProc 3.0 is currently in the later stages of being specied. One XProc 1.0 concept that 3.0 does away with is parameter
ports. It was decided that parameter ports will not be supported by xprocedit. However, for pipelines that don’t use
parameter ports, an XProc 1.0 serialization is still available. This is because the generated pipelines need to be tested but
XProc 3.0 processors are not widespread yet. Support for XDM 3.1 maps, which serve as a replacement for parameter
ports when supplied as a parameter option, is currently being implemented in xprocedit. It should be possible, if users are
interested and if funding is available, to use xprocedit as an XProc 1.0→3.0 migration tool, converting parameter ports
to map options during import.

An issue where an interactive editor may help is validation, or rather, forcing the user to only create valid pipelines. Ideally,
a graphical pipeline editor will not, for example, let users connect two steps with a directed edge that points from input
to output, from input to input, or from a step to itself. Another check that is built into the tooling might prevent users
from connecting an output port that may emit multiple documents to an input port that only accepts a single document.
To that end, a certain amount of custom Javascript application logic had to be employed, and this is not nished yet.
Verifying that the declared content types of an output port match the content types that an input port accepts is another
future custom Javascript validation that is interesting in designing XProc 3.0 pipelines with their support for non-XML
documents.

Some constraints, such as whether there are no loops in the pipeline or whether all required inputs are connected, are
currently only checked upon export, via XSLT, and with poor error reporting.

As mentioned in the previous section, export from the internal Javascript model via its JSON serialization is performed
by XSLT 3.0 transformations in the browser, starting from the result of applying fn:json-to-xml() to the JSON
model.

The framework maintains an internal Javascript object representation of the graph. It was decided that the XProc XML
document be generated from the JSON serialization of this model, rather than from the SVG rendering. The main reason
is that, although the JSON representation also contains some layout information, it is considered as more stable than
an SVG rendering. The tool that was chosen for generating the XProc XML document, Saxon-JS, supports XSLT 3 and
XPath 3.1, and therefore it is equally capable of transforming JSON documents to XML as it is capable of transforming
SVG to another XML vocabulary. What nally tipped the scale in favour of converting JSON rather than SVG to XProc
was symmetry: There also needs to be an import process that imports pipelines and step libraries to the internal model,
which is Javascript/JSON rather than SVG.

An important aspect when generating pipelines for future human editing in XML format is this: There can be multiple
equivalent XML representations of a given graph. Consider the following pipeline (Figure 1 [43], taken from
[GeueMT]):

42

Solution

Figure 1. A Simple XSLT Pipeline

When serializing this pipeline as an XProc XML document, two variants are possible:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:c="http://www.w3.org/ns/xproc-step" version="1.0">
 <p:output port="result" primary="true"/>

 <p:load name="load-xsl" href="test.xsl"/>

 <p:load name="load-xml" href="test.xml"/>

 <p:xslt>
 <p:input port="stylesheet">
 <p:pipe port="result" step="load-xsl"/>
 </p:input>
 <p:input port="parameters"><p:empty/></p:input>
 </p:xslt>

</p:declare-step>

and

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:c="http://www.w3.org/ns/xproc-step" version="1.0">
 <p:output port="result" primary="true"/>

 <p:load name="load-xml" href="test.xml"/>

 <p:load name="load-xsl" href="test.xsl"/>

 <p:sink/>

 <p:xslt>
 <p:input port="source">
 <p:pipe port="result" step="load-xml"/>
 </p:input>

43

Sub-Graphs

 <p:input port="stylesheet">
 <p:pipe port="result" step="load-xsl"/>
 </p:input>
 <p:input port="parameters"><p:empty/></p:input>
 </p:xslt>

</p:declare-step>

The rst variant uses a connection between the primary output of the step named load-xml with the primary input
of the XSLT step, while the second variant serializes the p:load steps in reverse order and therefore needs to insert a
p:sink step in between, and it needs to connect the primary input of the XSLT step, source, explicitly with the
primary output, result, of load-xml.

Unless one wants to use the x-y-coordinates as an ordering hint, the graph editor does not provide clues about the
preferred serialization order for the p:load steps. One possibility that was quickly rejected was to use another type of
connectors in the 2-D graph that represent document order. The idea was rejected because it puts an additional burden
onto the user that seems unnecessary.

Generating a serialization that makes maximum use of primary port connections is an optimization problem. The author
addressed it by a graph traversal that favours serializing primary ports adjacently when there are multiple choices. This is
a heuristics that does not guarantee optimal results but solves this issue well enough.

The import mechanism has to deal with a problem that is also related to default readable ports: It needs to make implicit
connections explicit for ports and also for options. The core of this problem has already been addressed in an XSLT-
based XProc documentation tool whose normalized output will be converted to JointJS’s internal JSON graph model
using Saxon-JS.

Sub-Graphs

The subpipelines of compound steps such as p:for-each are displayed in their own tabs. Some bookkeeping in the
Javascript application will make sure that they are included in the JSON representation upon export and that they are
removed when the placeholder block in the containing graph is removed. JointJS would have permitted in-place folding
of subpipelines, but expanding them would have quickly occupied much screen space and it would also have necessitated
more advanced auto-layout capabilities.

Auto-layout is currently being added to the editor, its primary application being rendering the pipeline and its
subpipelines (in separate tabs) initially afer loading an existing pipeline.

For round-tripping (import, edit, export, import, …), in order to spare users the ordeal of recreating a decent layout in
xprocedit over and over again, there is an option to preserve layout information in the serialized pipeline, using XProc
p:pipeinfo elements.

The application’s user interface is still under development; in March 2019 it looked like Figure 2 [45].

44

Other Visual XProc Editors

Figure 2. User Interface

The step library palettes on the lef are still supplied statically as JSON structures. There will be an import process that
processes p:import statements and makes available the imported steps, grouped by namespace prex. A diculty that
has already been solved is that imports ofen (in case of transpect, at least) use canonical import URIs that are not identical
with their locations on the Web server that xprocedit runs on. A catalog resolver written in XSLT that runs in the browser
will perform the required URI translations when recursively resolving the imports, and it will also restore the canonical
URIs when serializing the XProc XML from the internal representation.

5. Other Visual XProc Editors
Even before XProc 1.0 was nalized, EMC published the interactive XProc Designer [EMCXProcDesigner] that ran
in the browser. It was built using the Google Web Toolkit [GWT]. The editor was visually appealing, but lacked an
important feature: It was not possible to import other steps or step libraries. This and other features are mentioned in a
feature “pipeline” but development seems to have stalled since many years.

Another recently developed visual XProc editor is GProc [GProc]. It is written in Python with a GTK+ interface,
therefore it does not run in the browser. Similar to xprocedit, it is the result of a master’s thesis.

6. Outlook
xprocedit has been written as part of one of the author’s master’s thesis.Much efort has gone into adapting the Javascript
graph framework for XProc, therefore, given the limited amount of time available, some crucial features such as pipeline
and library import are not functional yet. Refactoring some of the user interface components, such as the option editor,
can use some rework. It is conceivable to use Saxon-JS to a larger extent for generating these types of forms.

While pipelines are currently “stored” in main memory, we will probably add a RESTXQ service, provided by a BaseX
database, to store the edited pipelines and to load step libraries from.

If there is interest and funding, XProc can become a native graph type in JointJS or its commercial derivative,
Rappid [JointJS].

If there is interest not only in editing pipelines in the browser but also in executing them in the browser, it is conceivable
that, using Saxon-JS and interfacing other Javascript libraries, a subset of XProc 3.0 will be made available in the browser
at some stage, probably as part of another master’s thesis.

45

Conclusion

An intermediate solution would be to run an XProc processor on a server and to post pipelines (and payloads) from the
editor to the server via HTTP. A specic appeal of this solution is that both nascent XProc 3.0 processors, Calabash and
Morgana, will accept alternative pipeline serialization formats than XML. So xprocedit might be able to post its internal
graph representation as RDF or as its native JSON model, without the need to do the default readable port optimization
that is only meant to simplify further editing in XML format.

7. Conclusion
A prototype of a visual XProc editor has been presented. Although the design choice for the graph library has been
vindicated, a considerable amount of efort was necessary and will be necessary in order to add XProc as another
supported graph type to the library, JointJS. Given that the visual editor will never been a complete programming
environment (since much project-specic code will be written in XSLT, XQuery, schema languages, etc.) and XProc is a
niche language, it is not clear whether xprocedit will be developed further or whether it will experience the fate of XProc
Designer, whose development stalled shortly afer the rst release. At least the code is open source and can be picked up
and modied by anyone.

Bibliography
[Blender] Blender Documentation: Node Editor https://docs.blender.org/manual/en/latest/editors/node_editor/

[BoldtSousa2012] Boldt Sousa, Tiago, (2012). Dataow Programming: Concept, Languages and Applications https://
paginas.fe.up.pt/~prodei/dsie12/papers/paper_17.pdf

[Boshernitsan1998] Boshernitsan, Marat, Downes, Michael (1998). Visual Programming Languages: A Survey https://
www2.eecs.berkeley.edu/Pubs/TechRpts/2004/6201.html

[EMCXProcDesigner] EMC XProc Designer https://community.emc.com/docs/DOC-4382

[GeueMT] (2019). Entwicklung eines graschen Editors für XProc-Pipelines mit dem SVG-basierten JavaScript-
Framework JointJS Master’s Thesis, Hochschule Merseburg

[GProc] GProc – A Graphical Authoring Tool for XML Pipelines https://gitlab.com/in2erval/gproc/

[GWT] Google Web Toolkit (GWT) https://opensource.google.com/projects/gwt

[JointJS] JointJS https://www.jointjs.com/

[Quin2019] (2019). XProc in XSLT: Why and Why Not. In: XML Prague 2019 Conference Proceedings, p. 255. http://
archive.xmlprague.cz/2019/les/xmlprague-2019-proceedings.pdf

[Serialization31] XSLT and XQuery Serialization 3.1, W3C Recommendation, 21 March 2017 https://www.w3.org/
TR/2010/REC-xproc-20100511/

[transpect] transpect, An Open-Source Framework for Converting and Checking Data https://transpect.github.io/

[XProc1] XProc: An XML Pipeline Language, W3C Recommendation, 11 May 2010 https://www.w3.org/TR/xslt-
xquery-serialization-31/

[XProc3] XProc 3.0: A Pipeline Language http://spec.xproc.org/

[xprocedit] xprocedit https://github.com/mag-letex/xprocedit/

46

https://docs.blender.org/manual/en/latest/editors/node_editor/
https://paginas.fe.up.pt/~prodei/dsie12/papers/paper_17.pdf
https://paginas.fe.up.pt/~prodei/dsie12/papers/paper_17.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2004/6201.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2004/6201.html
https://community.emc.com/docs/DOC-4382
https://gitlab.com/in2erval/gproc/
https://opensource.google.com/projects/gwt
https://www.jointjs.com/
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
https://www.w3.org/TR/2010/REC-xproc-20100511/
https://www.w3.org/TR/2010/REC-xproc-20100511/
https://transpect.github.io/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
http://spec.xproc.org/
https://github.com/mag-letex/xprocedit/

Generating documents from XQuery
annotations

Andy Bunce, Quodatum Ltd

Abstract

The paper describes an implementation of an xqDoc.org documentation generator. A focus of this
implementation is XQuery annotation support. In 2014, the xqDoc schema was updated to include
markup to capture XQuery annotations; however, existing renderers have ofen not been updated to
make use of this. A major driver for annotation support is documenting XQuery web applications built
using the RESTXQ standard. RESTXQ denes a standard set of XQuery annotations that can be used
to dene RESTful Web Services from XQuery. Annotations are also being used to dene frameworks
for unit testing, user permissioning and web socket interfaces. Annotations are code markup that
the runtime environment may choose to use to wire-in additional external functionality to XQuery
applications. The xqDocA implementation is open source. It is largely written in XQuery and runs with
recent versions of BaseX. It generates static, standalone HTML5 and XML and JSON output.

The included XQuery library modules can also be used to assist in the generation of other related
documentation artefacts. In the case of RESTXQ, these could be the generation of openAPI (Swagger)
and WADL documents.

47

Introduction

1. Introduction
Making sense of an XQuery code base can be hard, even if you have written it yourself. It can be dicult to see how
the parts t together. This paper describes an attempt to build a documentation tool to help with that process with the
particular goal of incorporating information from XQuery annotations. The paper looks at the history of annotations
and the history of XQuery documentation tools.

2. Annotations?
What are they, and how are they used?

2.1. What are annotations?

Wikipedia denes an annotation as “a metadatum (e.g. a post, explanation, markup) attached to location or other data.”
Their use in mainstream sofware engineering began in 2004 when Java 5 introduced them via JSR 175.

Annotations were added as part of XQuery 3.0 in 2014. The syntax is a "%" followed by an EQName and optionally a
set of values. The specication simply states: “XQuery uses annotations to declare properties associated with functions
(inline or declared in the prolog) and variables. ”

2.2. Use of annotations in XQuery

The following sections show some applications of XQuery annotations, which ofen mirror similar usage in Java
frameworks.

2.2.1. Built-in annotations

The XQuery 3.1 standard denes only two annotations: %private and %public. XQuery 3.0 Update denes only
one: %updating. It also states:

“Implementations may dene further annotations, whose behaviour is implementation-dened. For instance, if the
eg prex is bound to a namespace associated with a particular implementation, it could dene an annotation like
eg:sequential. If the namespace URI of an annotation is not recognized by the implementation, then the
annotation is ignored. Implementations may also provide a way for users to dene their own annotations.”

2.2.2. RestXQ

In 2012, Adam Retter presented a use of annotations to dene a web interface [RESTXQ]. It is based on the Java standard
RESTful Web Services [JAX-RS]. RESTXQ has since been implemented by many XQuery products as it provides a
straightforward way to wire-up XQuery code to a web interface.

A simple RESTXQ example:

declare
%rest:path("hello/{$who}")
%rest:GET
function page:hello($who) {
 <response>
 <title>Hello { $who }!</title>
 </response>
};

Here the %rest:path annotation species a URL and the %rest:GET species an HTTP method. In a suitable
Web server environment, a request for "/hello/fred" will be wired up to invoke the page:hello function with the
argument "fred". The result of the function will be returned by web server.

2.2.3. Unit testing

Unit testing is another popular domain for annotations. In the Java world, JUnit has long made use of annotations.
Many XQuery vendors provide a feature whereby tests can be run by invoking a command that scans a directory for
modules containing functions marked with a custom annotation, such as !unit:test. An example of this is XRAY
for MarkLogic [6].

48

XQuery documentation

2.2.4. Other applications

The BaseX product has recently extended its list of built-in annotation handlers with:

• %ws To dene access to Web sockets [1]

• %perm To dene a web application permission layer [2]

BaseX also denes annotations for lazy evaluation and locking [3]. The eXist-db product uses annotations in its HTML
templating feature [4] and the MarkLogic product uses annotations for transaction control [5].

3. XQuery documentation
The following sections describe XQuery documentation formats and tools.

3.1. The xqDoc format

In 2002, Darin McBeath realised the need for a tool for generating documentation from XQuery sources and created
the xqDoc website [XQDOC]. This site denes an XML schema for the namespace http://www.xqdoc.org/1.0. This
schema provides a vocabulary to describe an XQuery module and a reference Java implementation.

To get full value from xqDoc, the source should contain comments formatted according to certain conventions in a
similar fashion to Javadoc comments. See example below:

(:~
: The controller for constructing the xqDoc HTML information for
: the specified library module. The following information for
: each library module will be generated.
:
: Module introductory information
: Global variables declared in this module
: Modules imported by this module
: Summary information for each function defined in the module
: Detailed information for each function defined in the module
:
:
: @param $uri the URI for the library module
: @param $local indicates whether to build static HTML link for offline
: viewing or dynamic links for real-time viewing.
: @return XHTML.
:)
define
function print-module($uri as xs:string, $local as xs:boolean) as element()*

3.2. Schema updates

xqDoc was initially written to target XQuery 1.0. In 2014, the schema was extended to capture XQuery annotation
information dened in XQuery 3.0. The gure below highlights the addition:

49

Working with xqDoc documents

3.3. Working with xqDoc documents

The following features should be borne in mind:

Function names may be referenced in XQuery in a number of diferent styles. For example:

• abc:foo(42) or prefix2:foo(42)

• foo(42) (: with a default function namespace definition :)

• Q{http://nowhere.com/funs}foo(42)

Most xqDoc implementations return these as coded, rather than normalising them to a standard form. This can make
nding cross-references more complex.

Some implementations allow their library modules to be used without explicit import module statements.

If these imports are not listed in the generated xqDoc, it can be dicult to resolve some names. This suggests an xqDoc
generator needs information about the target platform both for its grammar and its static context.

3.4. Components

Implementations of xqDoc have three main components:

1. A component to parse the XQuery source code and generate the corresponding xqDoc XML elements for functions
and variables, etc.

2. A component to parse xqDoc style comments (:~ … :) into the corresponding xqDoc.

3. Optionally, a means to render the resulting XML into formats for reading, such as HTML. This part typically uses
XSLT.

3.5. XqDoc implementations

A partial list of xqDoc implementations is below.

50

Parsers

Table 1. xqDoc implementations

Name Ref Language Parser style Last
update

Notes

xqDoc [XQDOC] Java ANTLR 2.7 2014
xquery/
xquerydoc

[13] XQuery REX 2016 Also supplies an XProc step.

eXist-db [15] Java (unknown) Active Supplied as library function.
BaseX [16] Java (unknown) Active Supplied as library function.
wcanillion/
xqlint

[9] Javascript
(Node)

REX 2018 Use the help to nd xqdoc option.

lcahlander/
xqdoc

[17] Java ANTLR 4 Active

3.6. Parsers

Typically, the code to implement a parser is generated using a tool rather than hand written. Tools that have been used
for the task of parsing XQuery are ANTLR [7] and REx [8].

REx has the valuable feature that its input format is EBNF. EBNF is the grammar language used in the XQuery standards.
REx can also output parser code in many languages, including XQuery 1.0 and Javascript.

4. Introducing xqDocA
xqDocA was written to show the connections between various modules, as well as perspectives onto an XQuery code
base.

4.1. Overview

Given a list of the les to process, xqDocA creates an XQuery map that holds information about the source location of
each le along with a created XML parse tree and xqdoc output. This map is referred to as the model.

The model can be depicted as follows:

Another map, $options, holds conguration options to apply to the run. This map includes a list of "renderers" to
run against the model.

A renderer creates a single output le. There are currently two kinds of renderers.

1. global: generate an output that is project wide, such as an index.

2. module: generate an output for each XQuery source le, such as a direct rendering of its xqDoc le.

4.1.1. Renderers

Renderers can be viewed as a map with the following keys:

51

Implementation

Table 2. Renderer properties

Key Type Description
name xs:string Used to identify the renderer
description xs:string About the renderer
type xs:string "xqdoca:global" or "xqdoca:module"
uri xs:string The name of the output it creates
output xs:string Serialization parameters for the output
function function(*) The function that implements the rendering

The listing below shows some example renderers:

map {
 "output": "html5",
 "name": "index",
 "uri": "index.html",
 "function": Q{quodatum:build.xqdoc-html}index-html2#2,
 "type": Q{https://github.com/Quodatum/xqdoca}global,
 "description": "Index of sources"
}

map {
 "output": "json",
 "name": "swagger1",
 "uri": "swagger.json",
 "function": Q{quodatum:xqdoca.generator.swagger}swagger#2,
 "type": Q{https://github.com/Quodatum/xqdoca}global,
 "description": "Swagger file (JSON format) from restxq annotations."
}

map {
 "output": "xml",
 "name": "xqparse",
 "uri": "xqparse.xml",
 "function": Q{quodatum:xqdoca.mod-html}xqparse#3,
 "type": Q{https://github.com/Quodatum/xqdoca}module,
 "description": "xqparse file for the source module"
}

All outputs are created below the target folder specied in the $options map. For module style outputs, numbered
sub-folders are created for each source module and the uri value is resolved relative to this folder.

Functions annotated as global renderers need to have arity=2 and signature ($model as map(*), $opts as
map(*)).

Functions annotated as module renderers need to have arity=3 and signature ($file as map(*), $opts as
map(*), $model as map(*)).

4.2. Implementation

The code runs under BaseX 9.2, and currently no XSLT is used by the built-in renderers.

For parsing XQuery and xqDoc comments, the ex-xparse component [18] is used. This component is a REX based parser.
ex-xparse is modelled on John Lumley's proposal for an XParse Module [XPARSE]. It can parse a number of XQuery
versions and dialects.

The rendering code is:

 for $render in $global
 let $doc:= apply($render?function,[$model,$opts])
 return map{"document": $doc,
 "uri": $render?uri,

52

Sample outputs

 "output":$xqo:outputs?($render?output)
 },

 for $render in $module, $file in $model?files
 (: override opts for destination path :)
 let $opts:=map:merge((
 map{
 "root": "../../",
 "resources": "../../resources/"
 }, $opts))
 let $doc:= apply($render?function,[$file,$opts,$model])
 return map{"document": $doc,
 "uri": concat($file?href,"/",$render?uri),
 "output": $xqo:outputs?($render?output)
 }
)

4.3. Sample outputs

53

Customisation

4.4. Customisation
With any report generator, it is likely that customisation will be required. To facilitate this, new xqDocA outputs can be
added to the system without modications to the driver code. A plug-in system is provided using the dynamic loading
of code modules.

This is done using custom annotations within the xqDocA code base. Functions that generate xqDocA output must
have annotations in the xqDocA namespace indicating their role. At runtime, a designated directory is scanned for
XQuery modules, and functions containing the appropriate annotations can be invoked without requiring any other
code changes.

Three annotations are dened in the xqDocA namespace, "https://github.com/Quodatum/xqdoca".

Table 3. xqDocA annotations

Name DescriptionParameters
xqdoca:global Indicates

a
global
renderer

(name for reference, description)

xqdoca:module Indicates
a
module
renderer

(name for reference, description)

xqdoca:output Serialization
details

(output uri, serialization type)

Note
A function will have one of xqdoca:global or xqdoca:module, as well as an xqdoca:output
annotation.

Sample usage:

declare
%xqdoca:module("module","Html5 report on the XQuery source")
%xqdoca:output("index.html","html5")
function xqh:xqdoc-html2($file as map(*),
 $opts as map(*),
 $model as map(*)
)
as document-node()

or

54

Conclusions

declare
%Q{https://github.com/Quodatum/xqdoca}global("swagger1",
 "Swagger file (JSON format) from restxq annotations.")
%Q{https://github.com/Quodatum/xqdoca}output("swagger.json","json")
function _:swagger($model as map(*),
 $opts as map(*)
)

In order to enable runtime selection of code based on function annotations the following features must be provided by
the XQuery environment:

1. Dynamic module loading. This is standardised in the XQuery 3.1 specication as fn:load-xquery-module.
Currently, this feature is not widely supported; however, many implementation have custom variants that provide
equivalent functionality.

2. Annotation introspection. That is the ability at runtime to determine what annotations are attached to a function.
This is not a feature with any standardisation but again is widely supported via vendor libraries. See Saxon [10],
MarkLogic [11], BaseX [12], and eXist-db [14].

5. Conclusions
The combination of maps with the "?" lookup operator and XML with XPath provides a powerful programming
environment. The use of annotation driven plug-in modules provides a clean separation of concerns between the driving
code and task at hand.

I hope that this paper may be of value for those working with XQuery code and perhaps inspire some new uses for
annotations.

For code and issues, see https://github.com/Quodatum/xqdoca.

Bibliography
[XQUERY31SPEC] Josh Speigel: XQuery 3.1: An XML Query Language. 21 March 2017, W3C https://www.w3.org/

TR/2017/REC-xquery-31-20170321/

[RESTXQ] Adam Retter: RESTXQ 1.0: RESTful Annotations for XQuery. 21 March 2016, http://exquery.org/ http://
exquery.github.io/exquery/exquery-restxq-specication/restxq-1.0-specication.html

[JAX-RS] Pavel Bucek: JSR 370: JavaTM API for RESTful Web Services (JAX-RS 2.1) Specication. 22 Aug 2017, Java
Community Process (JCP) https://jcp.org/en/jsr/detail?id=370

[XQDOC] Darrin McBeath: xqDoc website. 13 Jan 2014, http://xqdoc.org http://xqdoc.org/index.html

[XPARSE] John Lumley: XParse Module. 8 Dec 2014, http://expath.org/ https://lists.w3.org/Archives/Public/public-
expath/2015Feb/att-0003/xparse.html

[1] Christian Grün: Web sockets. BaseX http://docs.basex.org/wiki/WebSockets#Annotations

[2] Christian Grün: Web permissions. BaseX http://docs.basex.org/wiki/Permissions#Annotations

[3] Christian Grün: XQuery Extensions: Annotations. BaseX http://docs.basex.org/wiki/
XQuery_Extensions#Annotations

[4] Wolfgang Meier: Templating. eXist-db https://exist-db.org/exist/apps/demo/examples/templating/templates.html

[5] Transaction annotations. MarkLogic https://docs.marklogic.com/guide/xquery/enhanced#id_94002

[6] Rob Whitby: An XQuery test framework for MarkLogic . https://github.com/robwhitby/xray

[7] Terence Parr: ANTLR. https://www.antlr.org/

[8] Gunther Rademacher: REx Parser Generator. https://www.bottlecaps.de/rex/

[9] William Candillon: JSONiq & XQuery Quality Checker . JSONiq & XQuery Quality Checker

55

https://github.com/Quodatum/xqdoca
https://www.w3.org/TR/2017/REC-xquery-31-20170321/
https://www.w3.org/TR/2017/REC-xquery-31-20170321/
http://exquery.org/
http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
https://jcp.org/en/jsr/detail?id=370
http://xqdoc.org
http://xqdoc.org/index.html
http://expath.org/
https://lists.w3.org/Archives/Public/public-expath/2015Feb/att-0003/xparse.html
https://lists.w3.org/Archives/Public/public-expath/2015Feb/att-0003/xparse.html
http://docs.basex.org/wiki/WebSockets#Annotations
http://docs.basex.org/wiki/Permissions#Annotations
http://docs.basex.org/wiki/XQuery_Extensions#Annotations
http://docs.basex.org/wiki/XQuery_Extensions#Annotations
https://exist-db.org/exist/apps/demo/examples/templating/templates.html
https://docs.marklogic.com/guide/xquery/enhanced#id_94002
https://github.com/robwhitby/xray
https://www.antlr.org/
https://www.bottlecaps.de/rex/
JSONiq%20&%20XQuery%20Quality%20Checker

Conclusions

[10] Michael Kay: Saxon function-annotations. https://www.saxonica.com/html/documentation/functions/saxon/
function-annotations.html

[11] MarkLogic annotations. https://docs.marklogic.com/sc:annotations

[12] Christian Grün: BaseX inspect:function-annotations. http://docs.basex.org/wiki/
Inspection_Module#inspect:function-annotations

[13] James Fuller, John Snelson: xquerydoc. https://github.com/xquery/xquerydoc

[14] Wolfgang Meier: xquery inspection. eXist-db https://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-
db.org/xquery/inspection

[15] Wolfgang Meier: docs:generate-xqdoc. eXist-db http://exist-db.org/exist/apps/fundocs/view.html?uri=http://
exist-db.org/xquery/docs&location=/db/apps/fundocs/modules/scan.xql&details=true

[16] Christian Grün: inspect:xqdoc. BaseX http://docs.basex.org/wiki/Inspection_Module#inspect:xqdoc

[17] Loren Cahlander: lcahlander/xqdoc . https://github.com/lcahlander/xqdoc

[18] Andy Bunce: ex-xparse. https://github.com/expkg-zone58/ex-xparse

56

https://www.saxonica.com/html/documentation/functions/saxon/function-annotations.html
https://www.saxonica.com/html/documentation/functions/saxon/function-annotations.html
https://docs.marklogic.com/sc:annotations
http://docs.basex.org/wiki/Inspection_Module#inspect:function-annotations
http://docs.basex.org/wiki/Inspection_Module#inspect:function-annotations
https://github.com/xquery/xquerydoc
https://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/inspection
https://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/inspection
http://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/docs&location=/db/apps/fundocs/modules/scan.xql&details=true
http://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/docs&location=/db/apps/fundocs/modules/scan.xql&details=true
http://docs.basex.org/wiki/Inspection_Module#inspect:xqdoc
https://github.com/lcahlander/xqdoc
https://github.com/expkg-zone58/ex-xparse

XQuery for Data Workers
Alain Couthures

Abstract

With some extensions, XQuery can be used to program Data Workers to manipulate data in various
formats and in diferent environments.

57

Introduction

1. Introduction
It always starts with a simple task that one simple script will surely satisfy easily. Depending on multiple environment
constraints, there are, then, more and more scripts, written in diferent and, possibly, multiple programming languages,
doing similar actions with more and more instructions in them.

Procedural programming languages are quite verbose: step by step, loops afer loops, handlers and variables are necessarily
created and modied. This is still more or less how processors efectively act.

Hopefully, there are much more concise programming languages where developers just describe what they want to get.
XQuery is one of them. Benets are readability and maintainability, even for non-programming consultants or domain
experts.

It is surely interesting to evaluate XQuery as a unique script language and to identify required extensions for manipulating
data. The best way to do that is to implement an XQuery engine for that purpose.

2. Requirements
A data worker is dened as a running program which manipulates data. It can get data from various sources then, possibly,
transform it and save, or send, the resulting data. A common usage for data workers is building interfaces between
applications, as ETL systems do at a larger scale.

Specically, a data worker is to be a minimal program for a basic operation while multiple data workers can be active at
the same time.

When data volume is not huge and processing time can be deferred, for example not during active hours, performance
is just to be considered when execution is perceived to be far too slow. Input/output operations are probably, anyway,
the most time consuming ones.

Data workers should be deployable on diferent machines with diferent operating systems, even small ones such as
RaspBerry Pis.

3. Chosen environment
3.1. NodeJS

NodeJS is an application which can be compared to a Java Virtual Machine but for Javascript instead. It is available for
most operating systems on a wide range of platforms and it is a stable product with more and more features, versions
afer versions. It runs with just one single thread, like in browsers, but, with heavy use of events and callback functions,
multitasking becomes possible.

There are various APIs to access resources such as "File System", "Net", "HTTP",... so it can be used to build complex
applications without user interface, except in command line.

NodeJS also comes with its own native basic HTTP server: no complex conguration for security or performance but an
ideal approach for small, dedicated, even not necessarily local, web servers listening to one diferent port each.

NodeJS can easily be extended using a package manager such as "npm". Unfortunately, using external packages creates
multiple dependencies with potential support issues. Using "famous" packages can result as a lazy way to program basic
operations with a lot of extra useless features and can slow execution. A good portable solution has to minimize external
packages use.

3.2. Browsers
Browsers are a convenient solution to render data produced by Data Workers. While data to be rendered could be too
big to t in a single HTML page, XForms is the easiest framework to access it with lters.

XForms can also be eciently used to enter rich parameters for a Data Worker when CLI is not enough or when users
need access from diferent machines.

3.3. XQuery
XQuery 3.1 can extract and transform data from XML documents but also from any text les, including JSON ones.
XQuery Update Facility adds expressions for modifying data without having to build new data.

58

Fleur: an XQuery implementation in Javascript

Native XML database implementations come with many function libraries to extend XQuery allowing to interact with
operating systems and to communicate with others.

XQuery can be dened as an extension of XPath allowing to construct nodes and perform more complex operations. As
a consequence, XQuery can construct data as any Server Page solution (ASP, JSP): XML documents, XHTML+SVG
+XForms pages,...

4. Fleur: an XQuery implementation in Javascript
Fleur is an XQuery 3.1+XQuery Update Facility 3.0 implementation. It is written in vanilla Javascript allowing it to run,
both, in browsers and with NodeJS.

Fleur includes its own DOM3 engine. It can also use browsers DOM for manipulating HTML pages, when used in
"XQuery-in-the-browser" mode.

Fleur, primarily, was intended just to replace XSLTForms XPath 1.0 engine for XForms 2.0 support. It will do much more
for XForms: no need for XForms 2.0 specic functions to construct nodes and XQuery Update Facility as a replacement
for XForms actions XML notation.

Using the native HTTP server provided by NodeJS, Fleur can be used to fully develop small XForms-REST-XQuery
(XRX) applications.

Fleur compiles XQuery expressions into a Javascript array of arrays. This Javascript array is an exact representation of the
corresponding XQueryX notation. Compiling expressions is interesting when an expression is to be evaluated repeatedly
(which is the case, for example, with XForms).

Fleur always evaluates expressions asynchronously (Javascript Promises) because it is a requirement for calls to functions
such as doc() which can be located deeply within the XQueryX tree. It is also necessary not to use the single execution
thread for too long time: periodically, Fleur allows other treatments to get access to the thread. At client side, a browser will
not freeze and concurrent evaluations will terminate independently. At server side, the native HTTP server, for example,
will start to treat another request when the current one is too time consuming.

It is possible to call any Javascript function in expressions prexing with "js:".

Internally, Fleur is, by design, always manipulating nodes. Extra node types are dened: MAP and ENTRY, ARRAY,
SEQUENCE, FUNCTION. Atomic values are stored in TEXT nodes with schemaTypeInfo associated.

Fleur can be launched from command line with usual parameters using the node program.

C:\Users\Alain Couthures>node fleur --help
Usage: node fleur ([-s:xmlfile] [-o:outfile] (-q:queryfile|-qs:querystring)
 [params]|[-p:port] [-f:folder])
 -s: XML input file (optional)
 -o: output file (optional)
 -q: query file
 -qs: query string
 -p: http server port
 -f: http server folder
 params name=value as externals

5. Development and tests
As XSLTForms, Fleur is developed using Eclipse Orion which provides automatic sources checking while typing. It
prevents from syntax errors, undeclared variables, unreached statements, unbalanced parentheses or curly braces. It is an
important feature because Javascript is an interpreted programming language.

59

Development and tests

Figure 1. Eclipse Orion

There is a source le for each feature. The HTTP server is used to collect and concat single les using virtual URLs.

XPath functions are written in vanilla Javascript instructions. This is allowed by a convert mechanism for atomic values
and sequences as parameters or returned value.

Fleur.XPathFunctions_prof["sleep#1"] =
 new Fleur.Function("http://basex.org/modules/proc", "prof:sleep",
 function(ms, callback) {
 if (ms > 0) {
 setTimeout(function() {
 callback(null);
 }, ms);
 return;
 }
 callback(null);
 },
 null, [{type: Fleur.Type_integer}], false, true, {type: Fleur.EmptySequence});

Tests are mainly performed with a browser. Thanks to virtual URLs, the le eur.js is automatically refreshed from last
edited source les. XForms, with XSLTForms, is used to run the ocial XQuery Test Suite, category per category then to
allow unit test for debugging. Even if XSLTForms is not yet using Fleur for itself, because of events support in XForms,
it can evaluate XQuery expressions asynchronously: in the same category page, tests are evaluated in parallel and the
corresponding results are provided depending on the evaluation time.

60

Development and tests

Figure 2. XQuery Test Suite

Serialization for tests is specic: resulting values are serialized as an equivalent XQuery expression instead of just as string
values. It guarantees no ambiguity about sequences, types and allows to check node types.

Figure 3. Fleur Sandbox

61

Extensions

6. Extensions
6.1. The generalized doc() and serialize() functions

The doc() function is to be used to get any document of any type from any source.

The default scheme is, at browser-side, "http" and, at server-side, "le". A scheme "cmd" is to be added to also get data
from local process execution.

An optional second parameter, similar to serialization options, allows to specify non-XML media-type and format specic
parameters such as eld separator for CSV data. When not present, the le extension, if there is one, is used to get an
implicit media-type.

An optional third parameter will be added to specify a node containing the grammar to be considered for Invisible XML
processing.

Non-XML data is automatically parsed by the doc() function. The resulting document can be navigated with the
corresponding node types mapping. There is not necessarily an XML tree for non-XML data. For example, a .xlsx le,
when parsed, is proposed as a map with, as entries, all the les within the ZIP format while Markdown text is proposed
as the corresponding XHTML node tree.

The serialize() function has a similar optional second parameter to, possibly, serialize from one notation to another.

6.2. Two-dimensional sequences for tabular data
Tabular data from CSV or spreadsheets is treated a sequence of raws, each line being also a sequence. This implied yet
another node type to distinguish from one-dimensional sequences. The separator ';' is dened to separate raws within
a two-dimensional sequence.

When data comes from a .xlsx le, the excel:values function can extract a two-dimensional sequence from a sheet
specifying the desired range.

The !! operator has been added to get raws one afer one as the ! operator is to be used to get items one afer one.

Headers can be associated to columns in a two-dimensional sequence.

It is convenient to be able transpose a two-dimensional sequence with the matrix:transpose() function. For example, a
list of items, one per line, can be loaded in CSV format to obtain a vertical sequence of items then transpose it into a
one-dimensional sequence.

Arithmetics could be added in the future.

6.3. Function Modules
XPath 3.1 specications do not include functions, for example, to manipulate les and folders or send an HTTP request.

Native XML database solutions provide many modules for various purposes. Because of the variety of them. BaseX has
been considered as a reference for implementing function modules in Fleur.

6.4. Server-side evaluation
Fleur can be asked to listen to a port number. It will then act as a basic HTTP server which will also execute .xqy pages and
send back the result. Of course, XForms pages for XSLTForms can be generated by Fleur when executing a .xqy request.
It can be used to, for example, provide inline minimal XForms instances which can be interesting for better performance.

This server can process simultaneous requests because of the asynchronous evaluations.

6.5. Client-side evaluation
Because it is contained in just one .js le, Fleur can easily be used at client-side. Even if NodeJS is supporting some of latest
ECMAScript syntax and new features, Fleur source is written for recent browsers.

Of course, client-side evaluation is also limited by security: accessing folders and les is restricted, cross-domain may not
be allowed and it is not possible to run external processes.

62

Examples of Data Workers with Fleur

Nevertheless, it is always a convenient way to try and debug more or less complex expressions, especially with result being
serialized in XQuery notation. The browser debugger can help too but a good knowledge of Fleur sources and XQueryX
is required to place breakpoints in instructions.

7. Examples of Data Workers with Fleur
7.1. Bank statements converted into CSV les

Some bank statements are transmitted using old OXF notation, which is a pre-XML notation while others are
transmitted as .xlsx les.

To allow an accounting solution to import those statements, the Data Worker has to navigate an input folder and, for
each bank le, convert its content. Each entry in a bank statement should become, because of double-entry bookkeeping
system, two raws into the corresponding generated CSV le.

Because FLWOR expressions results can be seen as sequences of columns, each transaction is, rst, transformed into 2
columns then, before serialization, the resulting matrix has to be transposed.

let $d := doc('ofxexample.ofx')
let $matr := matrix:transpose(
 for $s in $d//STMTTRN
 let $amount := $s/TRNAMT
 let $nmin := fn:abs(fn:min((xs:decimal($amount), 0)))
 let $nmax := fn:abs(fn:max((xs:decimal($amount), 0)))
 let $date := $s/DTPOSTED
 let $year := fn:substring($date, 1, 4)
 let $month := fn:substring($date, 5, 2)
 let $day := fn:substring($date, 7, 2)
 let $name := $s/NAME
 let $sdat := concat($day, '/', $month, '/', $year)
 return
 matrix:transpose(
 $sdate, '471000', $name, $nmin, $nmax, 'E';
 $sdate, '512100', $name, $nmax, $nmin, 'E')
)
)
return file:write('ofxexample.csv',
 matrix:labels(('Date', 'Num cpte', 'Libelle', 'Debit', 'Credit', 'E'), $matr),
 map {'header': 'present', 'media-type': 'text/csv', 'separator': ';'})

7.2. IT Inventory dashboards
There are many computers in an IT inventory. Each one has a name and textual properties with limited possible values
(OS version, disk type,...).

The Data Worker is an HTTP server which receives properties from each computer and generates dashboards for the IT
manager. There is a dashboard for each property. A dashboard is rendered as an HTML table where computer names are
grouped per values for the corresponding property. While, for example, migrating for one OS version to another, the OS
dashboard explicitly lists which computers are still to be migrated.

declare namespace output="http://www.w3.org/2010/xslt-xquery-serialization";
declare option output:indent "yes";
processing-instruction xml-stylesheet {'href="xsl/xsltforms.xsl" type="text/xsl"'},
let $doc := fn:doc('../private/inventory.xml')/inventory
let $m := $doc/computers/computer
let $nicm := map {
 for $n in $doc/nics/nic
 return entry {fn:data($n/@idref-to-nic-owner)} {fn:data($n/timestamp)}
}
let $m2 := (
 for $s in $m
 order by $s/name
 return $s
)

63

IT Inventory dashboards

let $totalPC := fn:count($m)
return
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xf="http://www.w3.org/2002/xforms">
 <head>
 <title>Répartition Postes</title>
 <style>
 body {{
 font-family: arial,sans-serif;
 font-size: 80%;
 }}
 table {{
 border-collapse: collapse;
 }}
 table, th, td {{
 border: 1px solid black;
 }}
 </style>
 <xf:model>
 <xf:instance>
 <inventory xmlns="" total="{$totalPC}" selected="version">{
 ('version', 'architecture', 'model', 'disktype', 'office') !
 <group name="{.}">
 {
 let $n := .
 for $s in $m2
 group by $v := (if ($s/*[name() eq $n])
 then $s/*[name() eq $n]
 else ' ')
 order by $v
 return
 <item name="{if ($v eq ' ') then 'unknown' else $v}"
 total="{fn:count($s)}">{
 $s ! name ! xs:string(.)
 }</item>
 }
 </group>
 }</inventory>
 </xf:instance>
 </xf:model>
 </head>
 <body>
 <p>{
 fn:format-dateTime(file:last-modified('../private/inventory.xml'),
 '[h01]:[m01]:[s01] [D]/[M]/[Y,2-2]') || ' - ' || $totalPC ||
 ' ordinateurs dans l''inventaire'
 }</p>
 <xf:select1 ref="@selected">
 <xf:itemset ref="../group">
 <xf:label ref="@name"/>
 <xf:value ref="@name"/>
 </xf:itemset>
 </xf:select1>
 <table>
 <tbody>
 <xf:repeat ref="group[@name = /inventory/@selected]/item">
 <tr>
 <td><xf:output value="if(@name = 'unknown', 'inconnu', @name)"/></td>
 <td><xf:output value="@total"/></td>
 <td><xf:output value="."/></td>
 </tr>
 </xf:repeat>

64

XLSForm to XSLTForms

 </tbody>
 </table>
 </body>
 </html>

7.3. XLSForm to XSLTForms

When it comes to write plenty of similar simple forms, it might be easier for authors to list items to be edited in a
spreadsheet. It is possible to write .xlsx les in XLSForm format to obtain XForms pages for ODK. ODK is not a fully
compliant XForms implementation.

The Data Worker has to read content from a .xlsx then generate the corresponding XForms page for XSLTForms. This
can be done dynamically at server-side.

declare function local:setattr($name, $value) {
 let $esc := replace(
 replace(
 replace(
 replace(
 replace($value, '&', '&amp;'),
 '<', '&lt;'),
 '>', '&gt;'),
 '"', '&quot;'),
 "'", '&apos;')
 return if ($value ne '') then
 (if (contains($esc, '&quot;')) then
 (' ' + $name + "='" + $esc + "'")
 else (' ' + $name + '="' + $esc + '"')) else ''
};
declare function local:attrs() {
 local:setattr("name", ?name) +
 local:setattr("label", ?label) +
 local:setattr("hint", ?hint) +
 local:setattr("calculation", ?calculation) +
 local:setattr("appearance", if (?type eq 'begin_group' and ?appearance ne '')
 then ('collapsed ' + ?appearance) else ?appearance) +
 local:setattr("relevant", ?relevant) +
 local:setattr("constraint", ?constraint) +
 local:setattr("constraint_message", ?constraint_message) +
 local:setattr("readonly", if (?type eq 'note') then 'true' else ?readonly) +
 local:setattr("required", ?required)
};
declare function local:attrs_choices() {
 local:setattr("list_name", ?list_name) +
 local:setattr("list_name", ?('list name')) +
 local:setattr("name", ?name) +
 local:setattr("label", ?label) +
 local:setattr("image", ?image)
};
declare function local:attrs_settings() {
 local:setattr("form_title", ?form_title) +
 local:setattr("form_title", ?title) +
 local:setattr("form_id", ?form_id) +
 local:setattr("default_language", ?default_language)
};
let $book := doc('public/grid.xlsx')
let $root := 'grid'
let $survey := excel:values($book, "survey!", (), true())
let $choices := excel:values($book, "choices!", (), true())
let $settings := excel:values($book, "settings!", (), true())
let $xlsform := '<xlsform>' +
 '<survey>' + string-join(matrix:transpose($survey !! (
 if (?type eq '') then '' else

65

XLSForm to XSLTForms

 if (?type eq 'begin_group') then
 ('<group' + (if (?appearance eq '') then ' appearance="collapsed"' else '')
 + local:attrs() + '>') else
 if (?type eq 'end_group') then '</group>' else
 if (starts-with(?type, 'select_one ')) then
 ('<select_one choices="' + substring-after(?type, 'select_one ') +
 '"' + local:attrs() + '/>') else
 if (starts-with(?type, 'select_multiple ')) then
 ('<select_multiple choices="' + substring-after(?type, 'select_multiple ') +
 '"' + local:attrs() + '/>') else
 ('<' + ?type + local:attrs() + '/>')))) +
 '</survey>' +
 '<choices>' + string-join(matrix:transpose($choices !! (
 if (?('list name') eq '') then '' else
 ('<choice' + local:attrs_choices() + '/>')))) +
 '</choices>' +
 '<settings>' + string-join(matrix:transpose($settings !!
 ('<setting' + local:attrs_settings() + '/>'))) +
 '</settings>' +
 '</xlsform>'
let $doc := parse-xml($xlsform)
let $leaf := function($n) {
 element {$n/@name} {}
}
let $subtree := function($n, $t, $l) {
 element {$n/@name} {
 $n/* ! (if (name(current()) eq 'group')
 then $t(current(), $t, $l)
 else $l(current()))
 }
}
let $begin := '${'
let $end := '}'
let $refconv := function($n, $s, $b, $e, $f, $g, $r) {
 if (contains($s, $b)) then
 (substring-before($s, $b) + ' ' +
 $g($n, substring-before(substring-after($s, $b), $e), $r) + ' ' +
 $f($n, substring-after($s, $e), $b, $e, $f, $g, $r)) else
 $s
}
let $refpath := function($n, $name, $r) {
 let $target := $n/ancestor::survey//*[string(@name) eq $name]
 return '/' + string-join(($r,
 (reverse($target/ancestor-or-self::*[@name]) ! string(@name))), '/')
}
let $bind := function($n, $b, $e, $f, $g, $r) {
 if (name($n) eq 'group') then () else (
 let $type := (if (name($n) = ('text', 'note', 'select_one', 'select_multiple'))
 then ()
 else
 attribute type {'xsd:' + name($n)})
 let $xpattrs := $n ! (@required, @readonly, @relevant) !
 attribute {name()} {if (string(.) eq 'true')
 then 'true()'
 else $f(., string(.), $b, $e, $f, $g, $r)}
 let $battrs := ($type, $xpattrs)
 return if ($battrs) then
 <xf:bind
 ref="{'/' + string-join(($r, (reverse($n/ancestor-or-self::*[@name]) !
 string(@name))), '/')}">{$battrs}</xf:bind> else ()
)
}

66

XLSForm to XSLTForms

let $model := <xf:model>
 <xf:instance xmlns="">
 {element {$root}
 {($doc/xlsform/survey/* ! (if (name(current()) eq 'group') then
 $subtree(current(), $subtree, $leaf) else
 $leaf(current())),
 <meta>
 <instanceID/>
 </meta>)}
 }
 </xf:instance>
 {$doc/xlsform/survey//* !
 $bind(current(), $begin, $end, $refconv, $refpath, $root)}
</xf:model>
let $input := function($n, $r) {
 <xf:input ref="{'/' + string-join(($r, (reverse($n/ancestor-or-self::*[@name]) !
 string(@name))), '/')}">
 {$n/@appearance}
 {if ($n/@label ne '')
 then <xf:label mediatype="text/markdown">{$n/@label/text()}</xf:label>
 else ()}
 {if ($n/@hint ne '')
 then <xf:hint mediatype="text/markdown">{$n/@hint/text()}</xf:hint>
 else ()}
 </xf:input>
}
let $templates := map {
 'group': function($n, $m, $i, $r) {
 <xf:group ref="{'/' + string-join(($r,
 (reverse($n/ancestor-or-self::*[@name]) !
 string(@name))), '/')}">
 {$n/@appearance}
 {if ($n/@label ne '')
 then <xf:label mediatype="text/markdown">{$n/@label/text()}</xf:label>
 else ()}
 {$n/* ! (if ($m?(name(current())))
 then $m?(name(current()))(current(), $m, $i, $r)
 else $i(current(), $r))}
 </xf:group>
 },
 'note': function($n, $m, $i, $r) {
 <xf:output ref="{'/' + string-join(($r,
 (reverse($n/ancestor-or-self::*[@name]) !
 string(@name))), '/')}">
 {$n/@appearance}
 {if ($n/@label ne '')
 then <xf:label mediatype="text/markdown">{$n/@label/text()}</xf:label>
 else ()}
 {if ($n/@hint ne '')
 then <xf:hint>{$n/@hint/text()}</xf:hint>
 else ()}
 </xf:output>
 },
 'select_one': function($n, $m, $i, $r) {
 <xf:select1 ref="{'/' + string-join(($r,
 (reverse($n/ancestor-or-self::*[@name]) !
 string(@name))), '/')}">
 {$n/@appearance}
 {if ($n/@label ne '')
 then <xf:label mediatype="text/markdown">{$n/@label/text()}</xf:label>
 else ()}
 {if ($n/@hint ne '')

67

Collecting from network equipments

 then <xf:hint>{$n/@hint/text()}</xf:hint>
 else ()}
 {$n/ancestor::xlsform/choices/choice[string(@list_name) eq string($n/@choices)] !
 <xf:item>
 <xf:label>{@label/text()}</xf:label>
 <xf:value>{@name/text()}</xf:value>
 </xf:item>
 }
 </xf:select1>
 },
 'select_multiple': function($n, $m, $i, $r) {
 <xf:select ref="{'/' + string-join(($r,
 (reverse($n/ancestor-or-self::*[@name]) !
 string(@name))), '/')}">
 {$n/@appearance}
 {if ($n/@label ne '')
 then <xf:label mediatype="text/markdown">{$n/@label/text()}</xf:label>
 else ()}
 {if ($n/@hint ne '')
 then <xf:hint mediatype="text/markdown">{$n/@hint/text()}</xf:hint>
 else ()}
 {$n/ancestor::xlsform/choices/choice[string(@list_name) eq
 string($n/@choices)] !
 <xf:item>
 <xf:label>{@label/text()}</xf:label>
 <xf:value>{@name/text()}</xf:value>
 </xf:item>
 }
 </xf:select>
 }
}
let $view := $doc/xlsform/survey/* !
 (if ($templates?(name(current())))
 then $templates?(name(current()))(current(), $templates, $input, $root)
 else $input(current(), $root))
let $form := document {(processing-instruction
 xml-stylesheet {'href="xsl/xsltforms.xsl" type="text/xsl"'},
 <html
 xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xf="http://www.w3.org/2002/xforms"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <head>
 <title>{data($doc/xlsform/settings/setting/@form_title)}</title>
 {$model}
 </head>
 <body>{$view}</body></html>)}
let $result := parse-xml(serialize($form, map{'indent': 'yes'}))
return $result

7.4. Collecting from network equipments

Network equipments such as switches know which equipments are connected to them using MAC address tables
associated to ports. This can be used to locate those equipments and it enables also to check that the switch conguration
is the one required (VLAN, PoE, speed,...). Unfortunately, such tables have to be automatically purged in the network
equipments. Luckily, there are network equipments with rmwares allowing to interact with them with a REST API
using JSON.

The Data Worker has to periodically collect MAC tables using the REST API then transform and send the resulting data
to another Data Worker acting as an HTTP server. The second Data Worker can then propose a dedicated dashboard.

for $i in 1 to 10000
let $step := (
 let $pcs := doc('collect.json')?*

68

Collecting from network equipments

 let $switches := doc('switches.json')?*
 let $login := doc('login.json')
 let $result := map {
 for $switch in $switches
 let $m := fn:doc('http://' || xs:string($switch?ip) ||
 ':80/rest/v3/login-sessions',
 map {'method': 'json', 'http-verb': 'POST',
 'timeout': '3000'},
 map {'userName': xs:string($login?user),
 'password': xs:string($login?password)})
 return (if ($m?cookie) then (
 let $sessionId := map {'method': 'json', 'http-verb': 'GET',
 'http-cookie': xs:string($m?cookie)}
 let $vps := doc('http://' || xs:string($switch?ip) ||
 ':80/rest/v3/vlans-ports', $sessionId)?vlan_port_element?*
 let $macs := doc('http://' || xs:string($switch?ip) ||
 ':80/rest/v3/mac-table', $sessionId)?mac_table_entry_element?*
 let $trk := $vps[?port_mode eq 'POM_TAGGED_STATIC' and ?vlan_id ne 5] !
 xs:string(?port_id)
 for $port in $vps[not(?port_id = $trk)] ! ?port_id
 for $vlanid in $vps[?port_id eq $port] ! ?vlan_id
 let $portmacs := $macs[?port_id eq $port] ! ietf:mac(?mac_address)
 return if (not(empty($portmacs))) then (
 for $portmac in $portmacs
 let $pcname := local-name(head($pcs[ietf:mac(?mac) eq $portmac]))
 let $ename := (if ($pcname) then $pcname else '#' || xs:string($portmac))
 return entry {$ename} {map{'switch': local-name($switch),
 'port': xs:string($port), 'vlan': xs:string($vlanid)} }
) else ()) else
 trace((), local-name($switch) || ': Connection refused. '))
 }
 let $t := (if (exists($result?*)) then (
 trace((),
 xs:string(current-dateTime()) || ' ' ||
 count(http:send-request(<http:request method='post'/>,
 'http://switchmanager:5000/batchcollect.xqy', $result)[2]/node()?*) ||
 ' MAC entries found. ')
) else
 trace((), xs:string(current-dateTime()) ||
 ' ' || 'No entry. '))
 let $pause := prof:sleep(1000 * 60 * 3)
 return ()
)
return ()

declare %updating function local:mergejsonfile($path, $batch) {
 let $doc := doc($path)
 let $m := $doc/map()
 let $update := (
 for $item in $batch?*
 return (if ($m?(local-name($item))) then
 replace node $m?(local-name($item))/node() with
 map:merge(($item/node(), $m?(local-name($item))/node()))
 else
 insert node entry {local-name($item)} {$item/node()} into $m))
 let $write := file:write($path, $doc, map {"indent" : "yes"})
 return $batch
};
let $filename := 'collect.json'
let $batch := request:body-doc()
let $tstamp := xs:string(current-dateTime())
let $addstamp :=
 (for $item in $batch?*

69

XForms 2.0 Test Suite for XSLTForms

 return (insert node entry btimestamp {$tstamp} into $item/node(), ()))
return local:mergejsonfile($filename, $batch)

7.5. XForms 2.0 Test Suite for XSLTForms
The XForms 2.0 Test Suite can be downloaded as a .zip le. Each test already contains a processing instruction for
the XSLTForms XSLT stylesheet to transform it but its path does not correspond to the one for the development
environment of XSLTForms, which is the same as Fleur, with NodeJS.

The Data Worker has to unzip the Test Suite le, change the processing instruction in each test, change the le extension
for each test le from .xhtml to .xml and update the index page accordingly.

7.6. Updating users accounts from HR sofware
Various applications need an up to date list of users. This can, usually, be obtained from the HR sofware. Depending on
how an application allows or not to partially update its own list of users and how it stores historical data related to them,
it can be required to minimize updates as just, for example, modied properties.

The Data Worker has to extract data from both systems, to compare them, to identify updates to be done and to
format them accordingly to the targeted application. For example, it will generate Powershell commands to update an
ActiveDirectory domain or generate REST API requests to delete and add members to Gmail groups.

8. Conclusion
This evaluation shows that it is very interesting to use XQuery for writing programs for Data Workers. The corresponding
programs are short ones because all the mechanics to efectively access or post data are necessarily embedded at lower level:
an XQuery implementation with such features allows programmers to concentrate to data transformation and XQuery
is clearly powerful at this.

Fleur is not yet a mature implementation and, efectively, not yet fully compliant with XQuery specications but it is
now already used in production because of all those extensions for Data Workers. Performance are not always very good
but there are already known optimizations to be added.

For Data Workers, there are more extensions now identied as interesting to be added: generate PDF les (possibly using
XSL-FO notation), send and receive emails, run Tesseract OCR to get ALTO XML documents. The use of handlers has
also to be improved.

Bibliography
[Fleur] Alain Couthures, Fleur, https://github.com/AlainCouthures/xphoneforms/blob/master/build/js/eur.js

[XQuery] Robie, Jonathan, Michael Dyck, (eds.), XQuery 3.1: An XML Query Language, W3C, 2017, http://
www.w3.org/TR/xquery-31/

[XPath functions] Michael Kay, (ed.), XPath and XQuery functions and operators 3.1, W3C, 2017, https://www.w3.org/
TR/xpath-functions-31/

[xquf] Snelson, John and Jim Melton, (eds.), XQuery Update Facility 3.0, W3C, 2015, http://www.w3.org/TR/xquery-
update-30/

[XF11] John M. Boyer, (ed.), XForms 1.1, W3C, 2009, https://www.w3.org/TR/2009/REC-xforms-20091020/

[XF2] E. Bruchez, et al., (eds.), XForms 2.0, W3C, 2018, https://www.w3.org/community/xformsusers/wiki/
XForms_2.0

[Pemberton 2013] Pemberton, Steven. “Invisible XML.” Presented at Balisage: The Markup Conference 2013, Montréal,
Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013. Balisage Series on Markup
Technologies, vol. 10 (2013). doi:10.4242/BalisageVol10.Pemberton01.

[BaseX] BaseX - an open source XML database. Homepage. http://basex.org

[OFX] Open Financial Exchange. Downloads. http://www.ofx.net/downloads.html

[ODK] Open Data Kit. XLSForm Online. https://opendatakit.org/xlsform/

70

subcheck Article MarkupUK London
Andreas Tai, Institut für Rundfunktechnik (IRT)

Michael Seiferle, BaseX GmbH

Abstract

The exchange of data in XML goes hand in hand with its validation. Mature technologies for this task
exist. But ofen more is needed than just the technical application of XML Schema, Schematron or Relax
NG. A user-friendly solution requires an abstraction from the XML foundation. Initiation and result of
a validating process needs to be put into the context of the end users domain and be a guidance to solve
conformance problems.

This paper shows how Schematron, XSLT, XQuery and JavaScript have been glued together to address
these requirements. Although the subcheck framework (http://subcheck.io [http://subcheck.io/]) was
implemented specically for the Timed Text Markup Language (TTML) the approach can be used by
any other XML vocabulary.

71

http://subcheck.io/
http://subcheck.io/

Intro

1. Intro
Do you share this problem? You have a well-documented XML structure and an XML Schema to test conformance, but:

• People do not use the XML Schema because they do not know it exists.
• People know the XML Schema exists, but they do not know how to apply it.
• People apply the XML Schema, but they do not know how to interpret the error messages.

If so: you are in the same situation as we were in 2012.

2. TTML and its Proles
The W3C Timed Text Markup Language (TTML) [TTML2] is an XML vocabulary for video subtitles and captions.

Like many other XML vocabularies, TTML works as a baseline and covers many known use cases. One use case is the
exchange of subtitle les, another use case is the rendering of subtitles in a video player. That's why it comes to no surprise
that in operation not the complete TTML vocabulary is used, but only subsets of the Markup Language.

Examples of these subsets are EBU-TT-D [EBUTTD] dened by the European Broadcast Union (EBU) and the widely
adopted TTML Proles for Internet Media Subtitles and Captions (IMSC) [IMSC11] dened by the Timed Text
Working Group (TTWG) 1of the World Wide Web Consortium (W3C), that also published TTML.

3. Validation of TTML Proles
Especially in the introduction phase of a new standard, it is important to make sure that the APIs of diferent sofware
systems use the standards in the same way and conform to the rules of the specications.

Once a workow is established, the exchanged documents need to conform to the established APIs.

Take for example the following real-world use case scenario: a freelancer creates subtitles for a media service company
which in turn got a contract from a streaming company to deliver subtitles for a complete season of a video series.

The media service company and the streaming company agree on IMSC as the technical baseline for subtitle XML les,
but they may also apply their own set of “house style rules”. So at the gateways of the service company and the streaming
provider, overlapping but also separate checks are executed.

The Institute für Rundfunktechnik (IRT) 2was well aware of this and other scenarios such as the “in-house” exchange
of subtitle les and aimed for a better support for them.

In 2013, the IRT had already been active in TTML standardization, especially in the denition of the EBU-TT proles.3
But although W3C XML Schema (XSD) les existed, non-conformant documents were still produced and distributed.

This was due to a lack of knowledge about the existence of the XSD itself, its application or about the meaning of the
implied rules and resulted in the new goal to build a more user-friendly validation alternative. The main inspiration came
from the W3C HTML validation service.

In the process of the installation of their own service, the IRT went through diferent stages:

• A master thesis on the topic was written by Barbara Fichte (supervised by Prof. Dr. Anne Brüggemann-Klein) and a
rst prototype was implemented.

• A cooperation with the company BaseX GmbH was started.
• Full working solutions were implemented.
• Two diferent products (subcheck and IMF Analyser) were launched to integrate the solutions.

In the following, we describe the implementation of the subcheck service by BaseX GmbH and the IRT.

4. Validation Requirements
One important requirement was to validate a TTML XML document against diferent sets of conformance rules without
duplicating the implementation efort, another that the end user should only get one error message when the same rule

1https://www.w3.org/AudioVideo/TT/
2The Institut für Rundfunktechnik GmbH (IRT) (Institute for Broadcasting Technology Ltd.) is the research centre of the German broadcasters,
Austria's broadcaster and the Swiss public broadcaster.
3see https://tech.ebu.ch/groups/subtitling

72

Implementation Approach

of diferent specications was broken. On top of that, the implementation of the sofware architecture was also guided
by a number of non-functional requirements.

Team Expertise

The choice of technologies had to reect the expertise available in the technical teams. For example, the IRT team worked
intensively with XSLT, Schematron and W3C XML Schema but less with XQuery or Relax NG.

Deployment of Technologies

The technologies used needed to be widely deployed because it had to be possible to integrate the solution into diferent
system environments.

All XML

We believed and still believe in the power of XML technologies. The cooperation of communities responsible for diferent
XML technologies resulted in well-aligned XML technologies like XPath, XSLT, XQuery, Schematron and XPROC. We
therefore wanted to use XML technologies wherever possible.

Separation of Concerns

We favoured a design approach with a framework of loosely coupled components that communicate over an agreed API.
This way, diferent stakeholder groups can work on diferent parts of the framework without interfering with the work
of other stakeholders.

We identied three diferent stakeholder groups:

• The domain stakeholders who know about conformance rules.
• The developers that implement the rules using validation technologies.
• The product team that technically designs and implements the end product.

End user Requirements

Existing validation strategies ofen come with very technical result messages, but users are ofen not technical. Even if
they are, they may not be familiar with an XML schema technology or XML at all. Therefore, the validation should
give information in an understandable way. The information should highlight not only what is wrong but also WHY
something is wrong and how to correct it. It should enable the user to trace back the error to the documentation of a
rule in the specication.

Product View

From the commercial side, some components needed to be integrated separately into diferent products. Diferent
developer teams needed to work independently from each other.

5. Implementation Approach

5.1. Master Thesis

Barbara Fichte explored the topic in depth in her well written master thesis "Strategies for User-Oriented Conformance
Testing of XML Documents".[MAFICHTE] She worked out the requirements, evaluated diferent schema languages
and described how she implemented a rst prototype.

She looked at the schema languages W3C XML Schema, Schematron, Relax NG and NVDL. The conclusion was that
Schematron was the best t for the purpose. One major aspect was the expertise in the team. But most importantly
Schematron makes it easy to integrate additional information into the validation.

The other Schema technology that was favoured was W3C XML Schema. It is widely implemented and works well with
grammar-based constraints. But W3C XML Schema came with a number of limitations. The most important one was
that for some types of rules XML Schema 1.1 was needed and at the time of writing of the master thesis only limited
support by free or open-source XSD 1.1 schema parsers was available.

As Schematron was such a good t, Barbara Fichte proposed and implemented an approach where all constraints could be
implemented with Schematron. She used Schematron’s abstract patterns to implement grammar constraints that would

73

Application Implementation

usually be implemented with W3C Schema. One example of these constraints is the order in which elements may appear
under a parent element.

In the later implementation of subcheck, the main schema technology used was indeed Schematron. However, we did not
completely remove W3C XML Schema from the validation process. The costs to re-implement already existing grammar
constraints in Schematron was too high compared to the benet. There also existed some XML Schema of TTML proles
published by standard bodies. The use of these schemas enabled subcheck validation to align better with the validation
approaches of these organizations.

5.2. Application Implementation

In the nal implementation, we separated three diferent steps:

• The documentation of the rules in a constraints XML document.
• The implementation of the rules in Schematron.
• The creation of a report that could be used by an end user product.

As the approach we took can be applied to any XML vocabulary in many scenarios, we will present a simplied use case
to visualize the key points.

The scenario is to test cabin bag weight against the allowance of the two assumed airlines Aeto and Örn.

In the appendix, diferent examples show how the approach can be applied to TTML vocabularies.

5.2.1. Rules Documentation

The base of the subcheck framework is the documentation of the rules in a separate XML le (constraints XML).

The implementation assumption is that more than one specication needs be tested. These specications need to be
dened rst. To keep the XML samples in the paper short we later use only one specication.

<Specifications>
 <Specification ID="ID-Aeto-Conditions">
 <Name>Conditions Aeto</Name>
 <Acronym>C-Aeto</Acronym>
 <Version>1.0</Version>
 </Specification>
 <Specification ID="ID-Oern-Conditions">
 <Name>Conditions Örn</Name>
 <Acronym>C-Örn</Acronym>
 <Version>1.0</Version>
 </Specification>
</Specifications>

Afer that, the constraints can be documented with the necessary level of detail and linked back to the specication.

<Constraint ID="c1">
 <ShortName>
 Cabin Bag Max. Weight 8kg
 </ShortName>
 <SpecifiedBy ID="ID-cabinbag-8kg">
 <SpecificationReference>
 ID-Aeto-Conditions
 </SpecificationReference>
 <Error_Level>ERROR</Error_Level>
 </SpecifiedBy>
 <ShortDescription>
 Value should be equal or less than 8.
 </ShortDescription>
 <ShortDescriptionUser>

74

Application Implementation

 Cabin bag should not have more than 8kg weight.
 </ShortDescriptionUser>
</Constraint>

The following UML class diagram models the relationship between constraints and specications.

Figure 1. UML Diagram Constraint - Specication

All information documented in the constraints XML should be specic to the constraint and not its implementation.

One constraint can be part of diferent specications and each of these specications may put the constraint in a diferent
context. While one specication may specify the constraint as a mandatory requirement, another specication may just
regard it as recommendation. The rst context would result in an error and the second context would result in a warning.

5.2.2. Schematron Schema File

The rule is implemented in Schematron as dened by the Schematron standard [ISOSCHEMA]. In addition, the @see
attribute is used for linking the Schematron rule back to the documented constraint.

<sch:rule context="cabin-bag/weight">
 <sch:let
 name="bag-weight"
 value="xs:float(.)"/>
 <sch:let
 name="passenger-name"
 value="../../name"/>

75

Application Implementation

 <sch:assert
 test="$bag-weight le 8"
 see="http://www.cabin-bag.info/c1"
 diagnostics="diag-weight-8">
 The weight of cabin luggage is 8kg
 or less.
 </sch:assert>
</sch:rule>

More context information is given by using Schematron’s diagnostic element.

<sch:diagnostic id="diag-weight-8">
 The cabin luggage of
 <sch:value-of select="$passenger-name"/>
 exceeded the maximum weight allowance by
 <sch:value-of select="$bag-weight -8"/>kg.
 Pack lighter!
</sch:diagnostic>

5.2.3. Compiled Schematron

The Schematron Schema is compiled into an XSLT using a customized version of the Schematron skeleton
implementation 4. The sekeleton implementation needed to be adjusted for two reasons:

1. We also wanted to use attributes as rule context.5

2. We wanted to provide a more human readable version of the location where the error occurs.

Given the the following XML le…

<passenger>
 <name>Jane Grant</name>
 <cabin-bag>
 <weight>11</weight>
 </cabin-bag>
 </passenger>

…the target output of the compiled Schematron XSLT is an XML document that follows the structure of the Schematron
Validation Report Language. A failed Schematron assert would result in the following SVRL:

<svrl:failed-assert
 test="$bag-weight le 8"
 id="assert-c1-1"
 see="http://www.cabin-bag.info/c1"
 location="/passenger[1]/cabin-bag[1]/weight[1]"
 subcheck:alternativeLocation="/passenger/cabin-bag/weight">
 <svrl:text>
 The weight of cabin luggage is 8kg or less.
 </svrl:text>
 <svrl:diagnostic-reference
 diagnostic="diag-weight-8">
 The cabin luggage of Jane Grant exceeded
 the maximum weight allowance by 3kg.
 Pack lighter!
 </svrl:diagnostic-reference>
</svrl:failed-assert>

The reference to the documentation of the constraint in the constraint.xml is kept in a @see attribute.

4see https://github.com/Schematron/schematron
5see also the discussion on issues https://github.com/Schematron/schematron/issues/44 and https://github.com/Schematron/schematron/issues/29
and pull request https://github.com/Schematron/schematron/pull/41

76

Application Implementation

5.2.4. Generation of the Report

The SVRL is taken as input for the transformation into an XML report. This report is provided to the end user product
that integrates the validation. The XML structure of the report is the agreed API between validation engine and post-
processing system.

The output is grouped by constraint in the report.

<errorCategory>
 <constraintID>
 c1
 </constraintID>
 <title>
 Cabin Bag Max. Weight 8kg
 </title>
 <shortUserDesc>
 Cabin bag should not have more
 than 8kg weight.
 </shortUserDesc>
 <longUserDesc/>
 <specs>
 <spec>
 <name>
 Conditons Aeto, Version 1.0
 </name>
 <nameAcronym>
 C-Aeto<
 /nameAcronym>
 <errorLevel>ERROR</errorLevel>
 </spec>
 </specs>
 <errors>
 <error>
 <messages>
 <messageMain>
 Assertion: The weight of cabin
 luggage is 8kg or less.
 Error Information: The cabin
 luggage of Jane Grant exceeded
 the maximum weight allowance
 by 3kg. Pack lighter!
 </messageMain>
 <messageAssertion>
 The weight of cabin luggage is
 8kg or less.
 </messageAssertion>
 <messageDiagnosticsAll>
 The cabin luggage of Jane Grant
 exceeded the maximum weight
 allowance by 3kg. Pack lighter!
 </messageDiagnosticsAll>
 </messages>
 <locations>
 <location
 locationType="resolvableXPATH">
 /passenger[1]/cabin-bag[1]/weight[1]
 </location>
 <location
 locationType="humanXPATH">
 /passenger/cabin-bag/weight
 </location>
 </locations>

77

Interfaces: Machine-to-Machine and the End-User

 </error>
 </errors>
</errorCategory>

5.2.5. Overview: The Transformation Chain

Figure 2. Transformation in the Validation Chain

6. Interfaces: Machine-to-Machine and the End-User
subcheck’s core interfaces are based on RESTXQ and are implemented in the BaseX XML Server as a pure XQuery
application.

The service contains a single endpoint /validate that orchestrates the validation engine and returns the resulting
report. Files that are uploaded by users will not be persisted by the engine, they are parsed and validated in memory only
and returned to the caller right away. The report will be returned in its XML form by default, but other formats are
possible.

The XQuery implementation receives an XML le — it returns an error on non-XML les — and runs the XSL
transformation for the compiled rules. The result of this process is then passed on to another stylesheet that transforms
it to the reporting format and if necessary conducts conversions to other formats such as JSON or text.

In practice, a request looks like the following:

$ cat luggage.xml | http POST http://subecheck/validate
###
> Content-Type: application/xml; charset=UTF-8

 <report>
 <errors>
 <constraintID>c1</constraintID>
 <title>
 Cabin Bag Max. Weight 8kg
 </title>
 <shortUserDesc>
 Cabin bag should not have more than 8kg weight.
 </shortUserDesc>

78

Using the subcheck Application

 ...
 </report>

Via REST, users can also request a report in JSON format by specifying a diferent Accept-Header:

$ cat luggage.xml | http POST http://subecheck/validate Accept:application/json
###
> Content-Type: application/json; charset=UTF-8

{
 "filename": "luggage.xml",
 "filesize": "2 KB",
 "report": [{
 "constraintID" : "c1",
 "title" : "Cabin Bag Max. Weight 8kg",
 "shortUserDesc": "Cabin bag should not have more than 8kg weight.",
 "longUserDesc" : "Assertion: The weight of cabin […]",
 "specs" : [{
 "errorLevel" : "ERROR",
 "name" : "Conditons Aeto, Version 1.0",
 "nameAcronym": "C-Aeto",
 "section" : "[…]",
 "text" : "[…]",
 "uri" : "https://c-aeto/spec"
 }],

While subcheck was designed with arbitrary frontends in mind — i.e. it can be easily integrated into existing workows
thanks to its almost universally accessible REST interface — we decided to implement a visual interface as a proof-of-
concept that allows users to interactively explore and assess their validation results.

This interface heavily builds on the JSON-serialization of the reports and is implemented as a Single-Page-Application
made up of Vue.js-components, that allow the user to potentially browse and lter hundreds of validation messages.

6.1. Using the subcheck Application

In order to validate an XML le, users may initiate validation by dragging their le onto the browser window. Once the
le is dropped, it is sent to the server and the validation pipeline will start. Once the pipeline has nished, usually in under
a second, the result list will appear.

The following screenshots are taken from the examples section at https://subcheck.ioand are the results of validating a
real subtitle.

6.1.1. The Report View

The report view allows the display of general metadata, such as word counts or other metrics, and allows users to gather
insight into the validation results and lter them according to their needs.

This view is built completely on the report result — so all information displayed is also available to other engines or
systems.

79

https://subcheck.io

Using the subcheck Application

Figure 3. The Report View

Inside the Report View, users may click on the messages to display more in-depth information.

Figure 4. Filtering

Tabs Overview

Description Tab The detail view starts with a general error description to add more technical context
for the user. When working with diferent proles within the same standard, subcheck
allows adding Tags to given rules that will be shown along with the general
description, so users can quickly assess whether this rule’s ErrorLevel is set
diferently in other proles.

More Information Tab In addition to technical information, this tab will provide more general or editorially
useful information and hints on why that message appeared.

Specications Tab The Specications tab points to the actual specications this error violates. Usually
entries contain a link that enables users to read the original specication for further
information.

80

Conclusion

Error Details Tab This tab contains an XPath-Expression that can be copied to any capable editor or
engine to pinpoint the exact error location. An HTML preview of the error is also
provided, so the user gets some document context.

6.1.2. Adaptive Filtering

A subcheck application can be used to validate documents against arbitrary schemas and allows users to provide user-
dened tags that apply to a given validation message.

The screenshot below shows ltering based on a real-world subtitle validation framework:

Figure 5. Filtering

The frontend automatically adapts itself to the validation results, in a way that allows users to explore their data with
these facets. The screenshot above shows, highlighted in bold, what kinds of messages are contained within the result.
Users may check or uncheck these categories to display or hide specic items in the report view.

For example, some users might only be interested in messages with a WARNING-Level, or maybe only warnings that apply
to styling-related messages.

7. Conclusion
The separation of concerns was successfully implemented.

Users can write the rules. They can update the documentation without interfering with validation or product design.

Developers can implement the validation rules. They do not have to rely on the domain user (unless there is a new rule
that is a breaking change). Although the main implementation is in Schematron, other schema languages can be used as
well, as long as a reported error links back to the documented rule.

Product designers can rely on the fact that, on the one hand, the same API is triggered to submit the le and lter criteria
and, on the other hand, to always get back an XML document in the same format.

8. Other Aspects and Perspective
Some interesting aspects could not be covered in this paper but should be mentioned shortly:

• subcheck was also used to validate the binary subtitle le format EBU STL. To make this possible the binary STL le
was translated rst into an XML representation of the binary structure. Afer that, the resulting XML structure was
validated using Schematron rules.

• Apart from the subcheck service, the validation engine was also implemented in the workstation-based product IMF
analyser. The tool is written in C# and C++.

• Especially the integration of the W3C XML Schema validation was a challenge. It needs more work and design changes
to become a generic solution.

81

Appendix A - Subcheck artifacts with TTML examples

Bibliography
[EBUTTD] TECH3380 EBU-TT-D SUBTITLING DISTRIBUTION FORMAT. W3C https://tech.ebu.ch/

publications/tech3380

[ISOSCHEMA] ISO/IEC 19757-3, Information technology — Document Schema Denition Languages (DSDL)
- Part 3: Rule-based validation - Schematron. 15 January 2016, ISO/IEC http://standards.iso.org/ittf/
PubliclyAvailableStandards/c055982_ISO_IEC_19757-3_2016.zip

[MAFICHTE] Barbara Fichte: Strategien zur benutzerorientierten Konformitätsprüfung von XML-Dokumenten. 15
June 2014, Technische Universität München

[IMSC11] Pierre Lemieux: TTML Proles for Internet Media Subtitles and Captions 1.1. W3C https://www.w3.org/TR/
ttml-imsc1.1/

[TTML2] Glenn AdamsCyril Concolato: Timed Text Markup Language 2 (TTML2). W3C https://www.w3.org/TR/
ttml2/

A. Appendix A - Subcheck artifacts with TTML examples
Example of TTML specication listing in the constraints.xml:

<Specifications>
 <Specification ID="spec-imsc1.1">
 <Name>
 TTML Profiles for Internet Media
 Subtitles and Captions 1.1
 </Name>
 <Acronym>IMSC1.1 Common</Acronym>
 <Version>2018-11-08</Version>
 </Specification>
 <Specification ID="spec-ttml2">
 <Name>
 Timed Text Markup Language 2
 (TTML2) CR
 </Name>
 <Acronym>TTML2</Acronym>
 <Version>2018-11-08</Version>
 </Specification>
</Specifications>

Example of a documented IMSC rule:

<Constraint ID="d1e1321">
 <ShortName>
 Extent attribute presence on region
 element
 </ShortName>
 <SpecifiedBy>
 <SpecificationReference>
 spec-imsc1-text
 </SpecificationReference>
 <SpecText>
 [The feature] #extent-region [is]
 permitted...
 </SpecText>
 <Error_Level>ERROR</Error_Level>
 <Chapter>7.4</Chapter>
 <URI>
 https://www.w3.org/TR/ttml-imsc1/#features-and-extensions-1
 </URI>
 </SpecifiedBy>

82

https://tech.ebu.ch/publications/tech3380
https://tech.ebu.ch/publications/tech3380
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055982_ISO_IEC_19757-3_2016.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055982_ISO_IEC_19757-3_2016.zip
https://www.w3.org/TR/ttml-imsc1.1/
https://www.w3.org/TR/ttml-imsc1.1/
https://www.w3.org/TR/ttml2/
https://www.w3.org/TR/ttml2/

Appendix A - Subcheck artifacts with TTML examples

 <SpecifiedBy>
 <SpecificationReference>
 spec-imsc1.0.1-text
 </SpecificationReference>
 <SpecText>...</SpecText>
 <Error_Level>ERROR</Error_Level>
 <Chapter>7.4</Chapter>
 <URI>
 https://www.w3.org/TR/ttml-imsc1.0.1/#features-and-extensions-1
 </URI>
 </SpecifiedBy>
 <SpecifiedBy>
 <SpecificationReference>
 spec-imsc1.1-text
 </SpecificationReference>
 <SpecText>...</SpecText>
 <Error_Level>ERROR</Error_Level>
 <Chapter>8.4.2</Chapter>
 <URI>
 https://www.w3.org/TR/ttml-imsc1.1/#extent-region
 </URI>
 </SpecifiedBy>
 <ShortDescription>
 tts:extent on all regions
 </ShortDescription>
 <ShortDescriptionUser>
 The extent attribute shall be present on all region
 elements.
 </ShortDescriptionUser>
</Constraint>

Example of rule implementation in Schematron:

<sch:pattern id="attributeRequirement">
 <sch:rule
 context="/tt:tt/tt:head/tt:layout/tt:region">
 <sch:assert
 diagnostics="elementId"
 see="http://www.irt.de/subcheck/constraints/d1e1321"
 id="assert-d1e1321-1">
 The attribute tts:extent is present.
 </sch:assert>
 </sch:rule>
</sch:pattern>

Example of an IMSC document with an error:

<tt xmlns="http://www.w3.org/ns/ttml"
 ttp:profile="http://www.w3.org/ns/ttml/profile/imsc1/text"
 xmlns:ttp="http://www.w3.org/ns/ttml#parameter"
 xmlns:tts="http://www.w3.org/ns/ttml#styling"
 xml:lang="en">
 <head>
 <layout>
 <region tts:origin="10% 80%"
 xml:id="bottom"/>
 </layout>
 </head>
 <body>
 <div>
 <p region="bottom" begin="0s" end="1s">
 Hello, I am Mork from Ork.
 </p>

83

Appendix A - Subcheck artifacts with TTML examples

 </div>
 </body>
</tt>

Example of the SVRL Output:

<svrl:failed-assert
 test="attribute::tts:extent"
 see="http://www.irt.de/subcheck/constraints/d1e1321"
 location="/*:tt[namespace-uri()='http://www.w3.org/ns/ttml'][1]/..."
 subcheck:alternativeLocation="/tt/head/layout/region">
 <svrl:text>
 The attribute tts:extent is present.
 </svrl:text>
 <svrl:diagnostic-reference
 diagnostic="elementId">
 The affected 'region' element has the ID 'bottom'.
 </svrl:diagnostic-reference>
</svrl:failed-assert>

Example of the report view output:

<errorCategory>
 <constraintID>d1e1321</constraintID>
 <title>
 Extent attribute presence on region element
 </title>
 <shortUserDesc>
 The extent attribute shall be present on all
 region elements.
 </shortUserDesc>
 <specs>
 <spec>
 <name>
 TTML Profiles for Internet Media
 Subtitles and Captions 1.0 (IMSC1)-
 Text Profile, Version 2016-04-21
 </name>
 <nameAcronym>IMSC1-Text</nameAcronym>
 <text>
 [The feature] #extent-region [is]
 permitted ...
 </text>
 <errorLevel>ERROR</errorLevel>
 <section>Chapter 7.4</section>
 <uri>
 https://www.w3.org/TR/ttml-imsc1...
 </uri>
 </spec>
 <spec>
 <name>
 TTML Profiles for Internet Media
 Subtitles and Captions 1.0.1 (IMSC1)
 - Text Profile, Version 2017-07-13
 </name>
 <nameAcronym>IMSC1.0.1-Text</nameAcronym>
 <text>
 [The feature] #extent-region [is]
 permitted...
 </text>
 <errorLevel>ERROR</errorLevel>
 <section>Chapter 7.4</section>
 <uri>

84

Appendix A - Subcheck artifacts with TTML examples

 https://www.w3.org/TR/ttml-imsc1.0.1/...
 </uri>
 </spec>
 <spec>
 <name>
 TTML Profiles for Internet Media
 Subtitles and Captions 1.1 -
 Text Profile,Version 2017-10-17
 </name>
 <nameAcronym>IMSC1.1-Text (Beta)</nameAcronym>
 <text>
 The tts:extent attribute SHALL be present
 on all region elements, where it SHALL use
 px units, percentage values, or root
 container relative units.
 </text>
 <errorLevel>ERROR</errorLevel>
 <section>Chapter 8.4.2</section>
 <uri>
 https://www.w3.org/TR/ttml-imsc1.1/...
 </uri>
 </spec>
 </specs>
 <errors>
 <error>
 <messages>
 <messageMain>
 Assertion: The attribute tts:extent is
 present.
 Error Information:
 The affected 'region' element has the ID
 'bottom'.
 </messageMain>
 <messageAssertion>
 The attribute tts:extent is present.
 </messageAssertion>
 <messageDiagnosticsAll>
 The affected 'region' element has the ID
 'bottom'.
 </messageDiagnosticsAll>
 </messages>
 <locations>
 <location
 locationType="resolvableXPATH">
 /*:tt[namespace-uri()='http://www.w3.org/...
 </location>
 <location
 locationType="humanXPATH">
 /tt/head/layout/region
 </location>
 </locations>
 </error>
 </errors>
</errorCategory>

85

An Improved dif3 Format for Changes and
Conicts in Tree Structures

Robin La Fontaine

Nigel Whitaker

Abstract

There are some pieces of sofware, and some formats, that are de-facto standards and have been around
for decades. One of these is the dif3 format for representing changes and conicts in text documents.
Dif3 works well for unstructured text documents that are divided into lines. It works surprisingly well
for pretty-printed source code and similar documents. But it has frustrating limitations when used for
XML or JSON or similar tree-based data formats.

Can we improve on dif3 without making it too complicated? Can the existing representation of changes
and conicts be extended to handle tree-based data? This paper seeks to answer these questions and to
describe how further benets can be enjoyed by using XML or JSON as the basis for showing conicts
and changes.

87

Introduction and Background

1. Introduction and Background
This paper is focused on the dif3 format rather than the dif3 executable application. In this paper, we will consider the
dif3 format from GNU difutils [1 [99]]. There are many possible outputs from dif3, but the one we are interested
in is the one that provides a merged le result with conicts marked up, i.e., the '-m' option on the command line.

The dif3 format can present information that is used in a three-way merge. It is a derivative of the two-way dif change
format that uses a subset of the change markers (it does not include the ancestor information, but does use lef and
right angle brackets to delimit the two inputs). Many users do not invoke dif3 directly; instead, it is ofen invoked by a
version control system such as git or mercurial when the users merge a branch, cherry-pick, rebase or change branches
with working directory changes.

The format can be used for resolving changes directly, perhaps using a simple text editor, and this was a common mode of
operation with early version control systems. It can also be suitable for use with a GUI to provide accept/reject changes,
resulting in a new version of the le with the conicts resolved.

In order to better understand the format itself, we will provide some background on how the dif3 tool identies areas of
conict We will not go into any details about the limitations of using line-based comparison tools on tree-structured data,
which is a subject that has been explored elsewhere and whose limitations are well known in principle if not in detail, as
are a number of diferent ways to make a line-based comparison work better with tree-structured data, e.g., re-formatting
into some canonical form.

It is possible to do a better job of comparison for XML and JSON if the comparison engine is aware of the tree structure.
The issue then is how to represent the change in a way that is suitable for other systems, for example, Visual Studio
Code [2 [99]], which understands the dif3 format. With some ingenuity, certain changes can be represented so that
accepting or rejecting the change results in a well-formed output. However, such a representation is not always possible
when, for example, start and corresponding end tags have been added or deleted, or when changes are nested.

We will propose a way that the dif3 format could be extended to handle ‘connected changes’ where the acceptance of
one change requires the acceptance (or rejection) of a connected change, for example, to keep start/end tags or braces
balanced. We will explore the diculties in trying to extend it further to handle nested changes and propose a way to use
XML or JSON to achieve this in a way that is more suited to those technology stacks.

2. How dif3 Delimits the Extent of Changes and Conicts
The example is based on this paper, "A Formal Investigation of Dif3" [3 [99]]. It explains how the two two-way difs
are aligned. It is useful to understand this in order to see how it might afect tree-structured data.

The example consists of three text les with numbers on each line, A, B and the 'old' le O, as shown below:

Table 1.

A.txt O.txt B.txt
1
4
5
2
3
6

1
2
3
4
5
6

1
2
4
5
3
6

The way these numbers are combined into the two difs, A+O and O+B, is shown in the table below.

88

How dif3 Delimits the Extent of Changes and Conicts

The last three columns show how the two difs are combined. Note that the yellow match shows where all three les
align. This alignment is important because it is the data between these alignment points that are considered as units of
change. Now we can look at the dif3 output using the -m option:

1
4
5
2
<<<<<<< A.txt
3
||||||| O.txt
3
4
5
=======
4
5
3
>>>>>>> B.txt
6

This output shows that the '4 5' sequence has been accepted as the only possibility between the '1' and the '2', but between
the '2' and the '6' we have three possible choices, which are listed in the output. We do not want to get diverted into a

89

Preserving Well-Formed Tree Structure in dif3

discussion about alignment algorithms, nor whether or not this is appropriate for tree-structured data. The point here
is that the positions in the les at which they all three align are considered 'anchor' points, and all of the data between is
considered to be a choice - and when there is some kind of conict, the choice is lef for the user to select.

There is an interesting consequence of this structure: it is not possible to have two consecutive choices without a separator
that is due to a commonality between all three les, i.e., an anchor point. Although for structured data it would be natural,
for example, to provide choices about attributes in a manner that allows each attribute to be chosen separately, the dif3
format dictates that two adjacent changes are seen as one choice. For structured data such as XML, it may be possible to
get round this by articially creating anchor points that are white space which is not relevant to the result. However, this
is not ideal, partly because dif3 would not create such articial anchor points and, therefore, the subsequent change to
the layout of the les would not be expected by the user.

The dif3 format provides a way to delineate the three choices, though not all of them may be present. Each choice is
independent of any other choice, and there is no connection between them. This independence presents a problem
for tree-structured data because there is a dependency between, for example, inserting a start tag and inserting the
corresponding end tag; unless these insertions are done as a single choice, the result will not be well-formed. This problem
can always be overcome by duplicating some of the data, and the argument here is very similar to that presented at this
conference last year regarding change to both content and structure [4 [100]]. Duplication can work well when the
span of the change is small because very little data needs to be duplicated, but when the span is larger, more data needs to
be duplicated and the nature of the change is lost in this duplication. In the extreme, duplication of the entire contents
of an XML le will always yield a choice between well-formed fragments because each fragment is the entire le. This
is correct but, of course, of little practical use.

We will look at some examples of changes to attributes where we can, with some manipulation of the data, present choices
where the selection of any one of the two or three choices will provide a well-formed result.

3. Preserving Well-Formed Tree Structure in dif3
In this section, we explore the issues of preserving the well-formed structure of XML or JSON when presenting choices
in dif3.

3.1. Representing XML Element Tag Change in dif3

XML tags present a problem for dif3 format in that it is, in general, not possible to ensure a well-formed result without
unacceptable duplication of content. Here is an example of a change of structure.

Table 2. XML tag change

A.txt O.txt B.txt
<p>This is a
long paragraph
where most
of it has
been made either bold or
italic, but the rest of
the paragraph remains
unchanged - there is no
change to the text so
we do not want it
duplicated.
 </p>

<p>This is a
long paragraph
where most
of it has
been made either bold or
italic, but the rest of
the paragraph remains
unchanged - there is no
change to the text so
we do not want it
duplicated.
 </p>

<p>This is a
long paragraph
where <italic>most
of it has
been made either bold or
italic, but the rest of
the paragraph remains
unchanged - there is no
change to the text so
we do not want it
duplicated</italic>.
 </p>

This could be represented as shown below, but there is duplication of unchanged text. Such duplication is confusing
because if there had been a small change, the user would have found it dicult to see.

<p>This is a long paragraph
where
<<<<<<< A.txt
most of it has
been made either bold or
italic, but the rest of

90

Representing XML Element Tag Change in dif3

the paragraph remains
unchanged - there is no
change to the text so
we do not want it
duplicated
||||||| O.txt
most of it has
been made either bold or
italic, but the rest of
the paragraph remains
unchanged - there is no
change to the text so
we do not want it
duplicated
=======
<italic>most of it has
been made either bold or
italic, but the rest of
the paragraph remains
unchanged - there is no
change to the text so
we do not want it
duplicated</italic>
>>>>>>> B.txt
. </p>

We can improve this representation, but at the cost of some intelligence on the part of the user to make consistent choices.

<p>This is a long paragraph
where
<<<<<<< A.txt

||||||| O.txt

=======
<italic>
>>>>>>> B.txt
most of it has
been made either bold or
italic, but the rest of
the paragraph remains
unchanged - there is no
change to the text so
we do not want it
duplicated
<<<<<<< A.txt

||||||| O.txt

=======
</italic>
>>>>>>> B.txt
. </p>

What we really need here is some way to connect the relevant consistent choices so that if the start tag is selected,
then the appropriate choice of the end is also made automatically. One simple way to achieve this would be
to add a choice id into the format. In this case, we have given the three choices an id value of 42. This is shown below.

<p>This is a long paragraph
where
<<<<<<<42< A.txt

||||||| O.txt

91

Representing XML Attribute Change in dif3

=======
<italic>
>>>>>>> B.txt
most of it has
been made either bold or
italic, but the rest of
the paragraph remains
unchanged - there is no
change to the text so
we do not want it
duplicated
<<<<<<<42< A.txt

||||||| O.txt

=======
</italic>
>>>>>>> B.txt
. </p>

There are many ways this connection could be achieved syntactically; this is just one. The rules here would be:

1. A conict may be labelled with an id.

2. For any labelled conict, there must be at least one other labelled conict with the same id value.

3. The selection of a choice within a conict with an id automatically results in the selection of the corresponding choice,
i.e., the choice with the same source le, within conicts with the same id.

Putting the numbers is not a big change to the format but would make a signicant diference to the ease of use of dif3
format for structured data,.

3.2. Representing XML Attribute Change in dif3

XML attributes present a particular challenge for dif3 format. Here is an example of a change of value for an attribute.

Table 3. XML attribute value change

A.txt O.txt B.txt
<span
 class="two"
 dir="rtr"
 id="23">

<span
 class="one"
 id="23"
 dir="TBA">

<span
 id="23"
 class="three"
 dir="ltr">

This could be represented as shown below. Note here that we are not showing the result of running 'dif3 -m' but rather
we have run an XML-aware comparison yielding results that we want to express in the dif3 format.

<span id="23"
<<<<<<< A.txt
class="two" dir="rtr"
||||||| O.txt
class="one" dir="TBA"
=======
class="three" dir="ltr"
>>>>>>> B.txt
>

92

Representing XML Attribute Change in dif3

Figure 1. Attribute example in Visual Studio code

In Figure 1 [93], we see how this can be displayed and managed in Microsof Visual Studio code.

The above will produce syntactically correct results, though it is not ideal because it would be more natural to choose
the attributes separately rather than as a pair. This separation can be achieved by inserting additional white space so that
we get two choices as shown below.

<span id="23"
<<<<<<< A.txt
class="two"
||||||| O.txt
class="one"
=======
class="three"
>>>>>>> B.txt

<<<<<<< A.txt
dir="rtr"
||||||| O.txt
dir="TBA"
=======
dir="ltr"
>>>>>>> B.txt
>

There is another representation that takes the common attribute name out of the choice, but it may be less easy for a user
to see what is happening. This representation is shown below.

<span class=
<<<<<<< A.txt
"two"
||||||| O.txt
"one"
=======
"three"
>>>>>>> B.txt
 dir=
<<<<<<< A.txt
"rtr"
||||||| O.txt
"TBA"
=======
"ltr"
>>>>>>> B.txt

93

Representing JSON Structure Change in dif3

>

3.3. Representing JSON Structure Change in dif3

For JSON, the issue of handling curly braces (for objects) and square brackets (for arrays) is similar to the issue of handling
XML start and end tags. Again, some representation of connected change is needed to maintain syntactic correctness.

Object members and array members are comma separated, and this syntax is tricky to get right in some situations. The
syntax is shown below.

object = begin-object [member *(value-separator member)]
 end-object
array = begin-array [value *(value-separator value)] end-array

These are the six structural characters:
 begin-array = ws %x5B ws ; [left square bracket
 begin-object = ws %x7B ws ; { left curly bracket
 end-array = ws %x5D ws ;] right square bracket
 end-object = ws %x7D ws ; } right curly bracket
 name-separator = ws %x3A ws ; : colon
 value-separator = ws %x2C ws ; , comma

Insignificant whitespace is allowed before or after any of the six
structural characters.
ws = *(
 %x20 / ; Space
 %x09 / ; Horizontal tab
 %x0A / ; Line feed or New line
 %x0D) ; Carriage return

Here is an example of a change to an array of strings.

Table 4. JSON structural change

A.txt O.txt B.txt
[[12,13,14],20,21,22] [12,13,14,20,21,22] [[12,13,14,20,21,22]]

This could be represented as shown below.

[
<<<<<<<42< A.txt
[
||||||| O.txt

=======

>>>>>>> B.txt

<<<<<<<61< A.txt

||||||| O.txt

=======
[
>>>>>>> B.txt
12,13,14
<<<<<<<42< A.txt
]
||||||| O.txt

=======

>>>>>>> B.txt

94

Representing JSON Separator Change in dif3

,20,21,22
<<<<<<<61< A.txt

||||||| O.txt

=======
]
>>>>>>> B.txt
]

The above will produce syntactically correct results, though it is not intuitive and requires careful allocation of id values
for the conicts to ensure correct behaviour. Note that the '[' in A has to be a separate conict from the '[' in B, although
they are at the same position in the array. Note that it could be argued that these changes are not conicts, but this does
not matter here; the point is that if we do want to represent them as choices for a user to select, then we are able to do so.

3.4. Representing JSON Separator Change in dif3
The problem with separators is that they cannot consistently be associated with either the start or the end of each
item (member for object and value for array) because if there is only one item then no separator is needed. Therefore,
maintaining correct syntax when items are added or deleted is not trivial. As mentioned above, the dif3 format does not
allow consecutive choices without 'anchor' data between, so it is necessary to group consecutive items that may be added
or deleted into one choice. This apparent restriction does lead to a greater likelihood of the syntax of each choice being
consistent.

Here is an example of a change to an array of strings.

Table 5. JSON array value change

A.txt O.txt B.txt
["one", "two"] ["one"] ["three", "four"]

This could be represented as shown below. Note here that we are not showing the result of running 'dif3 -m' but rather
we have run an JSON aware comparison yielding results that we want to express in the dif3 format.

[
<<<<<<< A.txt
"one", "two"
||||||| O.txt
"one"
=======
"three", "four"
>>>>>>> B.txt
]

The above will produce syntactically correct results, though it is not ideal because it would be more natural to choose
the values separately rather than as a complete list. This separation can be achieved by inserting additional white space
so that we get two choices as shown below.

[
<<<<<<< A.txt
"one"
||||||| O.txt
"one"
=======

>>>>>>> B.txt

<<<<<<< A.txt
, "two"
||||||| O.txt

=======

>>>>>>> B.txt

95

dif3 Format as XML or JSON

<<<<<<< A.txt

||||||| O.txt

=======
, "three", "four"
>>>>>>> B.txt
]

However, this representation can lead to syntax errors because if the "one" is rejected by accepting the B.txt choice in
the rst conict, then we do not need a comma before the next item. Unfortunately, we cannot get round that using
a connected choice. The problem here has to do with a combination of choices rather than one choice. We can just be
pleased that XML attributes are not comma separated!

4. dif3 Format as XML or JSON
An obvious question about dif3, when we are looking at XML and JSON, is whether or not we would get a signicantly
better result if we used XML or JSON instead of the fairly basic format of dif3. The table below shows an example in
dif3 and the corresponding le in XML and JSON using a very simple syntax in each case. The purpose here is just to
explore whether or not it makes sense to do this.

Table 6. dif3 format in XML or JSON

dif3 XML JSON
1
4
5
2
<<<<<<< A.txt
3
||||||| O.txt
3
4
5
=======
4
5
3
>>>>>>> B.txt
6

<d:diff3>
1
4
5
2
<d:change>
 <d:content origin="A.txt">
3
</d:content>
 <d:content origin="O.txt">
3
4
5
</d:content>
 <d:content origin="B.txt">
4
5
3
</d:content></d:change>
6
</d:diff3>

{
 "diff3": [
 "1",
 "4",
 "5",
 "2",
 {
 "change": {
 "A.txt": ["3"],
 "O.txt": [
 "3",
 "4",
 "5"
],
 "B.txt": [
 "4",
 "5",
 "3"
]
 }
 },
 "6"
]
}

For JSON, we have represented the sequence of lines as an array of strings, where each line is a string and a change is an
object where each member name is the name of the original le. We could have concatenated the lines with a '\n' delimiter,
but this would have been very dicult to read.

This example shows that JSON changes the look and feel signicantly due to the way it represents strings. XML is similar
to the original, though some detail is lef out here, for example, xml:space="preserve" or <![CDATA[to
preserve the formatting. If the original data is XML, then representing the changes in XML in this way would be very
confusing and it would be better to embed the changes within the original XML, assuming the original was well-formed.

The addition of the id (to represent connected changes) would be very simple in XML as an attribute, but a little harder
in JSON because it would mean adding another member to the change object. The table below compares some of the
characteristics of the three formats, where we use an informal score of three stars for good, two stars for OK and one
star for poor.

96

Nested Changes

Table 7. Characteristics of dif3, XML and JSON

Characteristic dif3 XML JSON Comment
No processing needed for
unchanged le

*** ** *

Preserve line structure *** *** ** JSON needs strings or \n
Good for text editor (by hand) *** * *
Connected changes ** *** **
Nested changes * *** **
Changes within a line * *** **
Show all resolved merges * *** **
Show changes to JSON data ** ** ***
Show changes to XML data * *** *

The table does show some potential advantages of having an XML representation of dif3, especially for automated
processing. For showing changes to well-formed XML in XML this might require some care to preserve comments,
processing instructions and the rst line declaration/prolog. Attribute changes could also not be handled as text so again
would need some further design thought. One approach would be to treat the XML source le as text and enclose it in
CDATA sections. It is likely that embedding the changes in a well-formed XML source would require a diferent approach
to simply using XML to show changes in a text le. Similar issues would occur for showing changes to JSON in JSON.

This proposal is not intended as an alternative to dif3 and it is clear that there would be issues to resolve if JSON or XML
were used. XML does look more appropriate, but it lacks one desirable characteristic of dif3: no processing is needed for
an unchanged le (or one with no conicts).

5. Nested Changes
Given an XML or JSON representation, we can go one step further and use the fact that the representation is hierarchical
to support hierarchical or 'nested' change. A nested change is a change in one branch that modies something that has
been removed in another branch.

We will look at an XML example, showing nested changes.

Table 8. XML nested data example

A.xml O.xml B.xml
<author>
 <personname>
 <firstname>Nigel
 </firstname>
 <surname>Whitaker
 </surname>
 </personname>
 <address>
 <phone>+44 1684 532141
 </phone>
 <street>Geraldine Road
 </street>
 <city>Malvern</city>
 <country>UK</country>
 <postcode>WR14 3SZ
 </postcode>
 </address>
</author>

<author>
 <personname>
 <firstname>Nigel
 </firstname>
 <surname>Whitaker
 </surname>
 </personname>
 <address>

 <street>Geraldine Road
 </street>
 <city>Malvern</city>
 <country>UK</country>
 <postcode>WR14 3SZ
 </postcode>
 </address>
</author>

<author>
 <personname>
 <firstname>Nigel
 </firstname>
 <surname>Whitaker
 </surname>
 </personname>

</author>

In the above example, one branch, B.xml, has deleted the address sub-tree, which the other branch has modied
with an added phone number.

Let us now consider how this could be represented using the proposed XML format presented in the previous section:

<d:diff3>
<author>

97

Nested Changes

 <personname>
 <firstname>Nigel</firstname>
 <surname>Whitaker</surname>
 </personname>
 <d:change>
 <d:content origin="A.xml">
 <address>
 <phone>+44 1684 532141</phone>
 <street>Geraldine Road</street>
 <city>Malvern</city>
 <country>UK</country>
 <postcode>WR14 3SZ</postcode>
 </address>
 </d:content>
 <d:content origin="O.xml">
 <address>
 <street>Geraldine Road</street>
 <city>Malvern</city>
 <country>UK</country>
 <postcode>WR14 3SZ</postcode>
 </address>
 </d:content>
 <d:content origin="B.xml"/>
 </d:change>
</author>
</d:diff3>

Here we can see the deletion of the address in B.xml, and if we carefully look at A.xml and O.xml, we can work out
that a phone child element has been added. But is there a better representation we can use? Given we are now using a
representation that follows the tree structure, we can also make use of this structure in the result. Here is an alternative
result, where we allow change to nest:

<d:diff3>
<author>
 <personname>
 <firstname>Nigel</firstname>
 <surname>Whitaker</surname>
 </personname>
 <d:change>
 <d:content origin="A.xml, O.xml">
 <address>
 <d:change>
 <d:content origin="A.xml">
 <phone>+44 1684 532141</phone>
 </d:content>
 <d:content origin="O.xml"/>
 </d:change>
 <street>Geraldine Road</street>
 <city>Malvern</city>
 <country>UK</country>
 <postcode>WR14 3SZ</postcode>
 </address>
 </d:content>
 <d:content origin="B.xml"/>
 </d:change>
</author>
</d:diff3>

Here we can see that by allowing nested change and making some small adjustments to the format to allow multiple
versions to be specied in origin attributes, we can avoid the repetition and make it easier for a human to understand.
However, we have moved further from the simple dif3 representation in this step. Rather than choose one of two or
three possibilities at each step, we now need to understand reuse of content, and a more complex format is used for the
origin attributes.

98

Conclusions

As well as being more compact and allowing reuse, there is a further benet: in some cases, nested changes can be ignored.
Suppose we decided to accept the change made in B.xml, the deletion of the address. In this case, we would take the
B.xml content, i.e., nothing, and immediately delete the other d:content alternatives at that level of the tree. We
do not need to consider the nested change related to the phone element when we choose the outer B.xml alternative.

It is also possible to prove that for a three-way merge process, as used by dif3, at most two levels of nested change/content
structure is required. This can be generalized so that for n-way merge algorithms (akin to the idea of 'octopus merge' used
in git), a maximum of n-1 levels of nested change are required.

We have not explored how the original dif3 representation could be enhanced to handle nested change. It could be done,
but it is more natural in the context of an XML representation of change.

6. Conclusions
In this paper, we have explored whether we can integrate more modern structure-aware comparison tools with the existing
dif3 format so that there is minimal change for users. We have shown that by laying out comparison results for structured
representations such as XML or JSON, we can make them easier to process and more likely to provide well-formed or
valid results. We have shown that there are limitations, in particular the representation of connected changes, where some
more intelligence in the dif format is needed to ensure the result is well-formed. Nested changes can also be represented
with amendments to the dif format, but this is more complicated and is likely to be easier using XML rather than a
variant of dif3.

Even if these things are possible, that does not necessarily mean we should go down this route. It is worth considering some
of the history and how we got here. Early version control systems were in use with 24 line, 80 column VDUs and with
editing tools such as vi and emacs. In those days, developers intimately understood the representation and manipulated it
directly. We are now used to using IDEs that directly support version control operations in their graphical user interfaces.
In many cases, these interfaces hide the change markers that we have been discussing and instead present the user with
side-by-side alternatives and GUI control buttons to resolve diferences. We could consider the display of the dif3 style
change-markers akin to the concept of 'tag display' modes in word-processors and XML editors. In many of these systems,
either it is impossible to see any underlying markup or it is a feature for advanced (or perhaps 'older'?) users that needs to
be explicitly turned on, with the growing trend for the default being to hide the markup from the user. Is there a similar
trend with change and conict markers? This implies that the actual syntax used to represent the changes and conicts
is less important than it used to be, and there is less need to try to preserve it.

In our recent paper [5 [100]], we identied some issues in version control systems that caused inconsistency and
confusion to users. One solution to those issues relies on separating the merge driver from subsequent conict resolution
tools or 'merge tools'. In pursuit of the best way forward, we have further explored these possibilities and we have
implemented the layout approaches discussed earlier.

We have shown that improvements to the representation of change for structured data is possible and desirable. Changing
the existing dif3 format is awkward and limited, so it might be better to move directly to a markup representation using
XML because the text will not be directly edited by users and mature tools are available to process the XML. Arguably it
would be simpler to avoid these issues and present users with a merge user interface that understood structured content
and provided operations which preserved the well-formed nature or validity directly. However, the value of a standard
format for such conicts and changes is that the merge tool is primarily a GUI and the user can choose the merge algorithm
and the merge tool independently.

We have presented this paper to explore these ideas, but we are not suggesting that the best approach is extending or
enhancing the current dif3 representation. An XML alternative to dif3 would have some advantages and should be
explored as a longer-term improvement for representing and processing conicts and changes in structured data.

References
[1] GNU Difutils. https://www.gnu.org/sofware/difutils

[2] Visual Studio Code User Guide: Using Version Control in VS Code. https://code.visualstudio.com/docs/editor/
versioncontrol

[3] S. Khanna, K. Kunal, B.C. Pierce: A Formal Investigation of Dif3 in Arvind V., Prasad S. (eds)
FSTTCS 2007: Foundations of Sofware Technology and Theoretical Computer Science. FSTTCS 2007.
Lecture Notes in Computer Science, vol 4855. Springer, Berlin, Heidelberg. https://link.springer.com/
chapter/10.1007%2F978-3-540-77050-3_40

99

https://www.gnu.org/software/diffutils
https://code.visualstudio.com/docs/editor/versioncontrol
https://code.visualstudio.com/docs/editor/versioncontrol
https://link.springer.com/chapter/10.1007%2F978-3-540-77050-3_40
https://link.springer.com/chapter/10.1007%2F978-3-540-77050-3_40

Conclusions

[4] Robin La Fontaine: When Overlapping XML Meets Changing XML Does Confusion Reign? in Markup UK 2018
Proceedings. https://markupuk.org/2018/Markup-UK-2018-proceedings.pdf#page=153

[5] Robin La Fontaine and Nigel Whitaker: Merge and Graf: Two Twins That Need To Grow Apart in XML Prague
2019 Conference Proceedings. February 7-9, 2019. http://archive.xmlprague.cz/2019/les/xmlprague-2019-
proceedings.pdf#page=175

100

https://markupuk.org/2018/Markup-UK-2018-proceedings.pdf#page=153
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf#page=175
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf#page=175

<Angle-brackets/> on the Branch Line
John Lumley, jωL Research,

Abstract

As a retirement 'hobby', somewhat removed from the computing milieu, the author has started building
a model railway in his garden. Surveying the extant tools for designing such layouts and nding them
“not quite right”, he started building a design tool himself, using the familiar technologies of XSLT3 and
SVG executing in a browser, employing Saxon-JS as the processing platform. By adding animations, the
tool expanded beyond simple design to in efect become an active model train system. The results of this
were demonstrated, with some success, at Markup UK in 2018. This paper describes the design of this
tool in some detail, as well as possible developments since that demonstration.

101

Introduction

1. Introduction
The author decided to take up a retirement “hobby” as a change from wrestling with programmatic complexities. Having
chosen to build a garden railway, having been trained as an engineer and having read some of the sage advice from those
already “in the scene”, it was clear that the layout would need some careful design. Issues such as maximum gradients,
minimum turn radii and loading gauge clearances required a clear and calculated design. Naturally there are CAD tools
specically targetted at model railways, but equally well, I found none of them to be just right.

So, having spent many years developing sofware, and in recent times being deeply immersed in XML technologies,
particularly XSLT3.0[XSLT] and SVG[SVG], I decided to build a specic design tool with these technologies. Given
Saxon-JS[Saxon-JS] as the XSLT execution engine, the tool was run through a browser connecting to a localhost web
server.

The main design used an XML denition of garden “background” and the possible layouts, and at rst calculated all
the resulting geometry, producing both a tabular summary and a set of SVG graphic elements that could be displayed
on a grid. This permitted for example interferences between tracks and garden elements (e.g. bushes) to be examined.
Simple XHTML controls were added to allow various aspects of the display to be altered dynamically, using Saxon-JS's
interactive modes (e.g. ixsl:on-change) to alter style or class properties of parts of the XHTML/SVG DOM tree.
Textual styling (fonts, colours. etc.) were dened in a set of CSS stylesheets.

Once a simple system was operational, the “picture” was enhanced, both by supporting an isometric view of the garden/
layout, but also more “realistic” graphics for the track and other aspects.

A little experimentation showed that the animation facilities present in SVG should allow objects to move around the
paths of the track. A simple facility was added to enable “block” objects to be run, moving from section to section under
controllable and alterable speeds. Simple click interaction allowed the points to be changed, so the path of these blocks
could be altered whilst they were still running.

The model for these “locomotives” was improved to support a three-dimensional denition consisting of a number
of orthogonal rectangular blocks and cylinders, from which an isometric SVG view of a simple locomotive could be
displayed. This would then be animated to follow the path of the current track section, with tangential rotation to “point
forward” and with suitable rotation animations on the wheels. Simple sound efects (running sound, whistles etc.) were
added to the design.

Finally, this system was demonstrated at MarkupUK 2018 in the DemoJam session, with some success.

In this paper I describe the deign and implementation details of the system that was demonstrated, and outline some
additional possible developments. In conclusion I discuss how suitable the combination of XSLT3, SVG and Saxon-JS
has been to tackling this design task.

2. Overall Design
The system designed is of course inuenced by the external factors of the garden itself and the track components from
which the railway will be built. The garden area chosen is approximately 10m x 4m on two levels:

102

Overall Design

Figure 1. The Garden for the Railway

Both levels are substantially at1 with a step of about 250mm between, so it should be possible to climb a connecting
embankment. (Generally gradients should be less than 1 in 40 and certainly no more than 1 in 25). The area was surveyed
(marked by the red survey points shown above) and a simplied plan of the garden drawn up:

Figure 2. The garden plan

I decided that the railway would be built at SM32 gauge/scale, also known as 16mm. The track has a gauge of 32mm, and
is taken to represent a 2f narrow-gauge line2 so the scale is 16mm to the foot or 1:19. As such, models of narrow-gauge
locomotives are large enough to be totally steam-powered. The tracks themselves would not carry electrical power — all
engines would be self-powered, and remotely controlled. The commercially available track had a small set of points of
diferent tightness and exible track sections of some 900mm length. This meant that apart from the xed-design points,
the rest of the track could be “freeform”, subject of course to a recommended minimum turn radius, which whilst being
dependent upon locomotive wheelbase, would be about 900-1000 mm.

The original design consists of ve major sections:

1Only when laying out the track bed did it become apparent that several elevation changes O(50mm) existed on the upper level.
2Many of the UK's “little trains”, such as the Ffestiniog and the Talyllyn, run on 1' 11½" gauge track

103

Layout Topology and Geometry

• A declarative description, as an XML structure, of the design environment, consisting of background components
(e.g. pictures of the garden and schematics of xed sections such as walls, paving and plants) and a series of layouts.
A layout is described as a sequence of (mainline) track sections of straights, curves and points, each represented by an
XML element describing length, radius and/or turn angle. Branch lines are children sequences of a point element.
Where necessary track connections between leaves of the tree are joined to make a complete graph thrrough named
link declarations.

• A geometry computational engine, written in XSLT3, which calculates the position and orientation of each track
section, and produces a map of the layout, keyed by section 'name', each entry describing both the track segments of
the section and the two-way connectivity between section ends.

• A graphical display of the design as an SVG tree. Background elements are generated as SVG groups from the
enviroment description. Track components are generated from unit descriptions and positioned with use instructions.
Within this, some components which can difer in display dependent upon state, such as points, are represented by
several views, each classed separately. The overall display can be subject to transform, most noteably an isometric one.
Textural styling and initial visibility is dened in a series of CSS stylesheets.

• An XSLT3 stylesheet, using Saxon-JS extensions, and invoked from an outer XHTML document, which populates the
XHTML with a series of interactive controls, and generates the detailed layout internal structures and SVG graphics
to be embedded in the web page. Templates respond to interaction, such as button state changes, or clicking on points
levers, altering the local CSS state of other components and controls.

• Adding “railway engines” as SVG objects, which are presented in both plan and isometric views from a simple “block-
and-cylinder” model. An event-based system animates these to run along tangential paths of the track sections, using
SVG animation facilities. Speed and direction of travel can be controlled interactively for multiple engines. Events are
generated at the conclusion of animations, and are caught by templates that consult the layout map to determine the
next sector to enter, then calculate the necessary animation duration, given length and speed, and start up the path-
following animation. Speed change involves stopping a current animation, recalculating duration for the remaining
section path and restarting an new animation partway through. Issues on collision detection (“train crashes”) will be
discussed.

As far as the sofware mix is concerned, the top-level XHTML document contains some constant background
components and div containers which will be populated, a script element containing a very small set of global
JavaScript functions, for primary control of animations and mapping from screen to SVG co-ordinates, and an invocation
of Saxon-JS with a precompiled program from an XSLT source of some 20 les and perhaps some 3000 source lines. This
program takes as input a le containingg denitions of the garden, possible layouts and locomotives. Textural styling is
supported by a set of associated (static) CSS les.

There are a number of (Javascript) libraries for supporting SVG efects and animation, and pretty much all the written
guides to “advanced” SVG use a combination of some of these, but I wanted to explore how much could be done almost
entirely in XSLT3.0. All the programming is limited to XDM data types, XHTML, SVG, CSS and XSLT3.0 with Saxon-
JS interaction extensions, with a minimum of (perhaps a dozen) globally dened small JavaScript functions, mostly to
invoke,query and stop SVG animations.

3. Layout Topology and Geometry
The original motivation was as a tool to design my planned garden railway, in terms of a connected set of track
components that satised the requirements of i) being constructed from obtainable parts and ii) lay within the limits
of bend curvature and track gradient that were recommended for such railways. For the present, given the at nature
of the garden, apart from the step between sections, vertical gradients have been ignored — how they could be added
is discussed later.

I considered attempting a “drag and drop” style of interaction, but decided against this, especially as all straights and curves
could be “freeform” so a small set of track parts wasn't really appropriate. The starting point was a choosing an XML
representation that focussed on continuous sequences of track components, describing the “main line”, implemented as
a sequence of elements, such as:

Example 1. A simple layout

<layout name="simple">
 <start x="400" y="400" orient="30"/>
 <straight name="section1" length="1000"/>

104

Layout Topology and Geometry

 <curve r="1500" angle="-45"/>
 <curve r="1500" angle="45"/>
 <straight length="500"/>
 <curve r="500" length="1400"/>
</layout>

which denes a layout simple that contains one section section1. This starts at the point (400,400) with an orientation of
+30° from the positive X axis. The rst section is a 1000 long3 straight, preserving orientation, followed by a circular arc
curve, of radius 1500, turning lef though a positive angle of 45°, followed by a similar right turn, a short straight and a
tighter lef-hand bend dened by radius and curve length, rather than angle. When plotted out this section looks like:

Figure 3. Simple layout - pictorially

Circular arcs were chosen as the only curve representation as i) they support a design method of “turn this tightly for x
degrees”, ii) they are supported directly in SVG and iii) their geometry is simple to calculate. Polynomial splines could
have been used, but they are dicult to dene in terms of curve length. In real railway engineering, curves are dened by
Cornu spirals - where the curvature (1/radius) is a piecewise linear function of arc length — lateral (centripetal) acceleration
increases at a uniform rate as a train moves along such a curve at constant speed. SVG alas does not support such curves.

Layouts that have such a simple topology (a single contiguous section) tend to be somewhat boring. Alterative routes
involve switching between diferent sections joined by points4. In our layout denition a point is represented as an
element, whose child is the “branch line”:

Example 2. A simple branch line

<layout name="simplePoint" start="section1">
 <start x="400" y="400" orient="30"/>
 <straight name="section1" length="1000"/>
 <point id="P1" radius="small" turn="left">
 <spur>
 <straight name="branch1" length="580"/>
 <curve r="2000" angle="-40"/>
 </spur>
 </point>
 <curve name="section2" r="1500" angle="-45"/>
 <curve r="1500" angle="45"/>
 <straight length="500"/>
 <curve r="500" length="1400"/>

3Any consistent distance units could be used of course, but for this case it's simplest to use millimetres.
4In American terminology turnouts.

105

Layout Topology and Geometry

</layout>

The branch line itself is dened by a spur element, whose children dene a set of sections. The point denes its type,
in this case a small radius point and its handedness — here the branch turns of to the lef. This layout looks like:

Figure 4. Simple branch line - pictorially

The point obviously has two possible paths, one straight on, the not-set track, shown in green, and the turning branch,
the set track. The layout now consists of three sections, section1 leading up to the point P1, followed by section2 as the
mainline and branch1 on the branch.

This “tree” representation can obviously be extended, such as adding a point on the branch line, with a sub-branch line
such as:

Example 3. A layout with two points

<layout name="twoPoints" start="section1">
 <start x="400" y="400" orient="30"/>
 <straight name="section1" length="1000"/>
 <point id="P1" radius="small" turn="left">
 <spur>
 <straight name="branch1" length="580"/>
 <curve r="2000" angle="-40"/>
 <point id="P2" radius="small" dir="trailing" turn="left">
 <spur>
 <curve r="400" angle="155"/>
 </spur>
 </point>
 <straight length="500"/>
 </spur>
 </point>
 <curve name="section2" r="1500" angle="-45"/>
 <curve r="1500" angle="45"/>
 <straight length="500"/>
 <curve r="500" length="1400"/>
</layout>

which looks like:

106

Representing the topology

Figure 5. Two points pictorially

Observant readers will note that the new point has been added in technically a trailing condition, i.e. proceeding from the
start it is only possible to enter the siding in reverse5. This leads us on to considerations of representing the layout topolo.

3.1. Representing the topology
If we want to use a layout for any purpose other than design (such as interactive animation), we don't just need the
geometry of the layout: we also need to represent the topology — which sections are joined when points are in a given
state? If a train leaves one section, which is the one it will enter, if any? To do this we represent contiguous sections of
track and points as components with two or three ports:

face The port which faces against an oncoming vehicle in normal travel, i.e. trains usually start from the face port.
For points this is the entry from which the exit track (trail or spur) depends upon the state of the point.

trail The port from which a vehicle emerges in normal travel, i.e. trains usually end a section leaving the trail port.
For points entered in the normal switched direction this is the exit when the point is not set.

spur Only dened for points, the exit port when the point has been set 6.

Using these denitions we can describe the topological relations between component sections in a simple map:

Figure 6. Topology of a two-point layout

This map has an entry for each component describing its type and its port connections in terms of a component/port pair
to which that port attaches. Note however that branch2 (the “backward” spur from point P2) is labelled down=false.

5Early railway practice only used trailing points on higher-speed main lines, to reduce risk of derailment from partially opened points.
6In theory an engine entering a set of points from the trail or spur direction, when the points are set against that direction, i.e. when set from trail or
not set from spur, may be able to “force” an automatic points switch, but this is not recommended practice.

107

Representing the topology

This means that the “main” direction (i.e. proceeding from P2 along branch2) of that section of track is in a reversed sense
to the rest of the layout — the importance of this will become apparent later.

Thus far we have a layout that has no loops or paths of multiple connection, and whilst totally representable by a tree is
not completely useful, especially if one wants to leave a train running around the layout indenitely. Suppose we have
a simple oval loop:

Figure 7. An oval becomes a loop

which starts at 2000,1000, and loops back through two straights and two curves to an end point co-incident in position
and orientation with the start. To “close the loop”, we have to convert our tree to a graph, in this case with “self-pointers”
by adding a specic link directive

Example 4. Describing a graph linkage

<layout name="oval" start="A">
 <start x="2000" y="1000" orient="20"/>
 <straight name="A" length="2000"/>
 <curve r="1000" angle="180"/>
 <straight length="2000"/>
 <curve r="1000" angle="180"/>
 <link>A.trail A.face</link>
</layout>

Now a vehicle nishing at A.trail can proceed happily into A again through A.face and similarly in a reverse direction.
Of course in this case we could infer from the geometrical co-incidence that such a link may be required, but sometimes
the geometry isn't quite accurate enough. Here is a passing loop:

108

Representing the topology

Example 5. A passing loop

<layout name="passingLoop" start="main-line1">
 <start x="400" y="400" orient="30"/>
 <straight name="main-line1" length="500"/>
 <point id="passing1" radius="small" turn="left">
 <spur>
 <curve name="passing-loop" r="1000" angle="-22.5"/>
 <straight length="1200"/>
 <curve r="1000" angle="-22.5"/>
 </spur>
 </point>
 <straight name="main-line2" length="1960"/>
 <point id="passing2" radius="small" dir="trailing" turn="right"/>
 <straight name="main-line3" length="500"/>
 <link>passing-loop.trail passing2.spur</link>
</layout>

Where now we have specically linked the passing loop component onto the trailing point spur:

Figure 8. Passing loop graphically and topologically

But linking isn't quite as straightforward. Suppose in our earlier example we consider the “small gap” between section2
and branch3 is joinable, and we specically add a link declaration:

Example 6. Linking arbitrary branches

 <layout name="twoPointsLinked" start="section1">
 <start x="400" y="400" orient="30"/>
 ...

109

Computing the geometry

 <point id="P1" radius="small" turn="left">
 <spur>
 ...
 <point id="P2" radius="small" dir="trailing" turn="left">
 <spur>
 <curve name="branch2" r="400" angle="155"/>
 </spur>
 </point>
 <straight name="branch3" length="500"/>
 </spur>
 </point>
 <curve name="section2" r="1500" angle="-45"/>
 ...
 <curve r="500" length="1400"/>
 <link>section2.trail branch3.trail</link>
</layout>

This link introduces a requirement for a “polarity shif” — a locomotive proceeding forwards from section2 would nd
itself running in the reverse direction in branch2. To permit smooth continuous operations, our “cyber-locomotives” have
a “running in the wrong-direction” property (which is xored with reverse), and when similar ports are connected with
similar “down-line” properties, a dummy swap component is inserted in the link, which will invert this property as a
vehicle transits7:

Figure 9. Swapping direction across links.

(swap1 and swap2 could in theory be the same, but the implementation is easier to use one for each direction, and the
additional cost minimal.)

3.2. Computing the geometry

The original intention of the design tool was to automate the calculation of track geometry. This proved to be
relatively easy, using a simple vector arithmetic package with a triple vector datatype of x,y,orientation8, and
the xsl:iterate instruction processing the track component sequences through template application as the track is
“constructed”. For example here is the code to process a straight element:

<xsl:template match="straight" as="map(*)" mode="makeTrack">
 <xsl:param name="start" as="map(*)"/>
 <xsl:param name="options" as="map(*)" select="map{}" tunnel="true"/>
 <xsl:variable name="length" select="@length" as="xs:double"/>
 <xsl:variable name="straight"
 select="v:new($length, 0) => v:rotateDeg($start?orient)"/>
 <xsl:variable name="end" select="v:add($start, $straight)"/>
 <xsl:variable name="path" select="p:line($start, $end)"/>

7Such an issue is faced by two-rail electric power systems on railways with such “re-entrancy”
8Adding a z (height) component would be simple, being altered by length * gradient. It is safe to assume that gradients will never be steep
enough to make signicant efects on planar (x,y) positions.

110

Computing the geometry

 <xsl:variable name="pieces" as="element()*">
 <g class="straight">
 <g class="schematic">
 <path d="{$path}"/>
 <xsl:sequence select="r:join($end)"/>
 </g>
 <g class="way"
 transform="translate({$start?x},{$start?y})
 rotate({$start?orient})">
 <xsl:if test="$options?layTrack">
 <xsl:sequence select="r:straight($length)"/>
 </xsl:if>
 </g>
 </g>
 </xsl:variable>
 <xsl:sequence select="map{
 'type':string(name()),
 'orient.start' : $start?orient,
 'orient.end' : $start?orient,
 'pieces': $pieces,
 'length': $length,
 'path': $path,
 'start' : $start,
 'end': $end,
 'name': string((@name,
 'S-'||string(accumulator-before('trackNo')))[1])
 }"
 />
</xsl:template>

$start is an input parameter which is a map whose principal members are x, y and orient9. The new end point,
including its orientation, is calculated efectively by

v:add($start, v:new($length,0) => v:rotateDeg($start?orient))

where v:rotateDeg($in,$rot) rotates a vector (and its end orientation) by $rot degrees. During this
operation the (SVG) graphic pieces for the schematic and the track pictures are constructed (see below) and added
to the resulting map as well as other needed information, such as track section length. Each piece is named, using an
xsl:accumulator to generate something suitable in the absence of a specic @name value.

This template is executed from an xsl:iterate instruction processing the children of a layout or a spur:

<xsl:template match="rail|spur|layout" as="map(*)*" mode="makeTrack">
 <xsl:param name="start" as="map(*)">
 <xsl:apply-templates select="start" mode="#current"/>
 </xsl:param>
 <xsl:iterate select="* except (start | link)">
 <xsl:param name="start" select="$start" as="map(*)"/>
 <xsl:choose>
 <xsl:when test="not(self::break)">
 <xsl:variable name="part" as="map(*)">
 <xsl:apply-templates select="." mode="#current">
 <xsl:with-param name="start" select="$start"/>
 </xsl:apply-templates>
 </xsl:variable>
 <xsl:sequence select="$part"/>
 <xsl:next-iteration>
 <xsl:with-param name="start" select="$part?end"/>
 </xsl:next-iteration>
 </xsl:when>

9Orientation is held in degrees and converted to radians as required. SVG describes its rotations in degrees and I know fairly closely what 30°, 45° and
225° look like, but not 1.5 radians.

111

Drawing pictures

 <xsl:otherwise>
 <xsl:break/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:iterate>
</xsl:template>

For each subsequent iteration the $start parameter becomes the end property of the $part just generated. Needless
to say processing a curve is similar to that for straight, though the calculation of the chord, end point and the
appropriate SVG ellipitical arc are more complex. For the point we need to construct two sections: the not set (straight
on) track section and its end point, and the set section with its attached branch line, which is constructed by a recursive call
on the iteration above, with the branch spur element as context and the spur position and orientation as the $start
parameter.

4. Drawing pictures
Thus far we have drawn schematic representations of the track as SVG line-based components. With a little work SVG
is entirely capable of generating much more detailed views, with a lot of possibility of caching intermediate and reused
sections. For example:

Figure 10. More detailed track

In this case the track is generated from a sequence of “rail-and-sleeper” subsection denitions, displayed via SVG's use
directive:

<g xmlns="http://www.w3.org/2000/svg" class="way"
 transform="translate(3769.549241302635,2599) rotate(30)">
 <use href="#track10" x="0" y="0"/>
 <rect class="ballast" x="360" y="-36" width="140" height="72"/>
 <use href="#sleeper" x="378" y="0"/>
 <use href="#sleeper" x="414" y="0"/>
 <use href="#sleeper" x="450" y="0"/>
 <line class="rail SM32" x1="360" y1="-16" x2="500" y2="-16"/>
 <line class="rail SM32" x1="360" y1="16" x2="500" y2="16"/>
</g>

In this case we have a “pre-built” 10-sleeper section of straight track (#track10), followed by “ballast”, three sleepers
and two rails to display the remainder of the required length. All these are sized to the actual dimensions of the track
being used. This is translated and rotated into the required start position.

112

Isometric Views

4.1. Isometric Views

Planar views are useful, but they don't give a picture of what one might see, where the third dimension has some
importance. Luckily an isometric transformation can give a view “from above and aside”. This involves applying a
transform of translate(3000,0) rotate(30) skewX(-30) scale(1,0.8660254037844387)
to the graphics and altering some pieces to support a pseudo-3D view. For example, let us add a simple building:

Figure 11. A simple building

I could perhaps have looked at using a full 3D modelling package which was capable of generating SVG outputs, but
my needs were modest and could perhaps be handled by a simple declarative model, processed completely with XSLT to
generate suitable SVG. The building is dened by a simple XML structure of boxes and a cylinder:

<buildings>
 <resources> …. </resources>
 <group x="1000" y="1000"
 fill="url(#brickWall)" stroke-width="10" stroke="black">
 <box width="1000" height="500" rotateZ="0" depth="500" z="0">
 <top fill="slategrey"/>
 </box>
 <box height="1" width="150" depth="400"
 z="0" x="100" y="0" fill="url(#wood)"/>
 <box height="1" width="250" depth="200" fill="black"
 z="200" x="350" y="0" />
 <box height="1" width="250" depth="200" fill="black"
 z="200" x="650" y="0"/>
 <box width="1" height="300" depth="200" fill="black"
 z="200" x="1000" y="100">
 <east >
 <svg:image xlink:href="images/officer-in-uniform.png"
 x="100" y="0" height="200"/>
 </east>
 </box>
 <cylinder radius="50" length="150" axis="z" fill="black"
 z="500" x="800" y="250" stroke="darkgrey"/>
 </group>
</buildings>

which is then used to generate an SVG group that look like:

113

Isometric Views

Figure 12. An iso-orthogonal building

such that when the entire SVG group, within which lie all picture pieces (grid, plan, track etc..), is subject to isometric
projection, the building appears to have depth and height. (We also produce a true orthogonal view, so we can look at
the scene from “directly above”.) Currently the repertoire is orthogonally-oriented rectangular blocks and cylinders, with
named “faces” to which styling and content can be attached (top, south and east for blocks, with bottom, north and west
normally hidden, and surface, top and bottom for cylinders.). Components are currently positioned absolutely and can be
grouped. Using this we can build models of the complexity of:

Figure 13. The Lady Anne

which is dened by some 50 components, some of which are repeats of common substructures, implemented by bindings
and interpolations of XSLT variables. This ability to style and add content to the named faces of the component parts is
important . For example, adding the “smokebox handle” to the boiler front of Lady Anne merely requires:

<cylinder class="boilerFront" x="151" z="80" axis="x"
 radius="27" length="45">
 <end class="boilerEnd">
 <svg:g class="silver" stroke="silver" stroke-width="5">
 <line x1="0" y1="0" x2="10" y2="-10"/>
 <line x1="0" y1="0" x2="-5" y2="-14"/>

114

Interaction

 </svg:g>
 </end>
</cylinder>

and the graphic components will be placed and transformed correctly to sit in the boiler front. As we will see later, it is
critical that the SVG views of these model engines must be such that they produce the expected picture when subjected
to an isometric transformation, as shown for the building, as the trajectory paths trains must follow (which are efectively
on the flat) are themselves subjected to the same projection.

5. Interaction
The tool has two main types of interaction: animations, discussed in the next section, and view selection. Most of the view
selection is based on switching the display style of graphical or user inteface element on and of, through controls
that are generated from declarative descriptions. For example:

Figure 14. Controls for display options

<div name="show">
 <title>Show</title>
 <option default="">photos</option>
 <option>survey</option>
 <option>grid</option>
 <option>plan</option>
 <option>buildings</option>
 ...
 </div>

declares a group of controls, from which a group of labels and checkboxes are generated, some of which are preset and
whose rendering is shown above. Control of display is performed by a generic XSLT template, which elds change events
on the generated input checkboxes, all of which are class-labelled as show:

<xsl:template match="input[@class eq 'show']" mode="ixsl:onchange">
 <ixsl:set-style name="display" object="id(@value)"
 select="if(ixsl:get(.,'checked')) then 'inline' else 'none'"/>
</xsl:template>

The @value of the input is taken to the be id of an element (either XHTML or SVG) that contains all items of
the given type and display style modied accordingly. Generic hide/reveal controls for object with a given class token are
supported by a similar template.

Switching between orthogonal and isometric views of the garden/plan/layout involves modifying a top-
level transform attribute on the SVG and setting a class token to indicate the given view. As all (3D)
components have both orthogonal and isometric views, each class-labelled, simple CSS compound rules
such as .viewISO .partORTHO,.viewORTHO .partISO {display: none;} and
.viewISO .partISO,.viewORTHO .partORTHO {display: inline;} ensure that only the correct
class components are displayed for the currrent view.

Points obviously have state and this needs to be changed to direct trains to suitable parts of the layout. We construct
an XHTML “signal box” where all the point controls are checkboxes and through which specic points can be set into
switched or unSwitched classes. CSS styling ensures that the appropriate components for the given state are displayed.
Sometimes determining which control efects which point can be problematic. A solution to this is to support clicking
on the (SVG) points themselves, or an adjacent lever. This is achieved by the templates:

<xsl:template match="*[contains-token(@class, 'pointLever')]"

115

Animations

 mode="ixsl:onclick">
 <xsl:variable name="point"
 select="ancestor::*:g[contains-token(@class, 'point')][1]"/>
 <xsl:variable name="point.state"
 select="id($point/@id||'-state')"/>
 <xsl:sequence select="ixsl:call($point.state,'click',[])"/>
</xsl:template>

<xsl:template match="input[contains-token(@class, 'pointState')]"
 mode="ixsl:onchange">
 <xsl:variable name="checked" select="ixsl:get(., 'checked')"/>
 <xsl:sequence select="js:playAudio(id('pointChange'))"/>
 <xsl:for-each select="id('point-' || @value, .)/*:g[1]">
 <ixsl:set-attribute name="class"
 select="if($checked) then 'switched' else 'unSwitched'"/>
 </xsl:for-each>
</xsl:template>

where clicking on the (SVG) point lever dispatches another click event to the appropriate state control in the signal box.
Controls in the signal box respond to changes by playing the pointChange sound efect and changing the (un)switched
class of the actual signal, which changes which of the graphic groups is displayed:

Figure 15. Changing points with a signal box

6. Animations
SVG supports animations based on SMIL event-driven models. Of particular interest in this case is the use of path-based
animation where a given SVG group can be successively translated along a given path. As trains move along tracks, and

116

Animations

in our design tracks are dened by sections from which SVG path denitions can be constructed easily, we should be
able to simulate the movement of trains around our tracks. And so it proved.

The basic animation we used is efectively “move this group g along this path p in a duration of dur seconds.” For each
section of the layout (i.e. a contiguous run of straight and curves, or the set and not set short sections of points), we
calculate both a path description (the d property of svg:path) and the total length. For example the dashed blue line
is the dened (single) path for the section2 track section, for which a total length of 4,256 has been calculated :

Figure 16. A track section path

Assuming we wish our “train” to run at 100mm/s (a scale speed of ~ 7km/hr, i.e. a brisk walking pace), then the animation
should take 42.5 seconds. This is achieved by forming up an svg:animateMotion denition element:

<animateMotion xmlns="http://www.w3.org/2000/svg"
 id="train.animation" xlink:href="#train"
 begin="indefinite" fill="freeze" repeatCount="1"
 calcMode="linear" keyTimes="0;1" keyPoints="0;1"
 rotate="auto"
 dur="42.5" onend="eventEnded('train;section2.trail') >
 <mpath xlink:href="#section2.path" />
</animateMotion>

The graphics group that will be subject to the animation
Conditions for the start of the animation — in this case the animation waits until it is triggered explicitly. When
the animation has nished freeze the graphics state, i.e leave the graphics translated to the end of the path and do
not repeat.
keyTimes and keyPoints dene a piecewise-linear mapping between proportions of the duration and
proportions of the total length — this is used to support moving in reverse and altering “speed”.
auto adds a rotation transform to the animated graphics corresponding to the current path tangent direction, so
the graphics object “turns” along the path.
When the animation completes the global function eventEnded() will be executed with an argument
containing information about which train has completed a move and where — in this case arriving at the trail port
of section2.
A reference to the path to be followed.

The animation is started by invoking the beginElement() function method of the animation element through a
minimal global JavaScript function. Thus our “train”(in this case a cyan arrow) progresses along section2 as below:

117

Animations

Figure 17. Movement along a track section.

When the animation nishes, the onend statement is invoked, which is elded by the global JavaScript function
eventEnded().

var ignoreEvent = false;
function eventEnded(e) {
 if(!ignoreEvent) {
 var event = new Event("change",{"bubbles":true});
 var store = this.document.getElementById("event");
 store.value = e;
 store.dispatchEvent(event);
 }
 ignoreEvent = false;
}

There are cases (described below) when we need to ignore an end event temporarily.
A (hidden) checkbox element in the DOM tree that is used to hold the event information as its value property.
Propogating an event that the value of the event information store has changed.

Afer this function has executed, the checkbox id('event') receives a change event which is caught by an XSLT
template:

<xsl:template match="*:input[@id eq 'event']" mode="ixsl:onchange">
 <xsl:variable name="layout" as="map(*)"
 select="$layouts(f:radioValue('layouts', .))"/>
 <xsl:variable name="parts" select="tokenize(@value, ';')"/>
 <xsl:choose>
 <xsl:when test="exists($parts[3])">
 <!-- There is a new section to enter -->
 <xsl:call-template name="runTrain">
 <xsl:with-param name="engine" select="$parts[1]"/>
 <xsl:with-param name="trackComponentID" select="$parts[3]"/>
 <xsl:with-param name="tracks" select="$layout?tracks"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <!-- There is a no new section to enter - end of the line -->
 <xsl:for-each select="id($parts[1])">
 <ixsl:set-attribute name="position" select="$parts[2]"/>

118

Animations

 </xsl:for-each>
 <xsl:variable name="engine" select="$parts[1]"/>
 <xsl:call-template name="stopEngine">
 <xsl:with-param name="engine" select="$engine"/>
 </xsl:call-template>
 <xsl:call-template name="reverseEngine">
 <xsl:with-param name="engine" select="$engine"/>
 </xsl:call-template>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

There are a number of possible layouts, held as a named map global variable. Which is the active one is determined
by the value of the layouts radio button set.
This template expects the value of the event checkbox to be a string of the form train;current
port[;next port].
If there is a next port, then the train is run on that new section from that port, on the current layout.
If not then the train is assumed to have reached the end of the line. It is stopped and the direction reversed, so that,
as a convenience to the driver, “opening the throttle again” again will cause the train to move back along the section.

The trains are controlled by a simple interactive XHTML control group (obviously of class cab):

Figure 18. The Engine Cab

<div id="Arrow.cab" class="cab arrow">
 <div class="toggler">
 <input class="run" type="checkbox"
 value="Arrow" />
 <label class="text">Arrow</label>
 </div>
 <label class="title">Speed
 0</label>
 <div name="direction" class="direction">
 <div class="toggler">
 <input class="direction" type="checkbox"
 value="reverse"/>
 <label class="text">reverse</label>
 </div>
 </div>
 <input type="range" min="0" max="1200"
 value="0" list="tickmarks" />
 <div class="radio speed">
 ...
 <div class="toggler">
 <input class="speed" type="radio"
 value="200" />
 <label class="text">slow</label>
 </div>
 ...
 </div>
</div>

Apart from selecting a locomotive to run, the only current action is to change its speed or direction of travel. A number
of XSLT templates detect changes in the cab input controls such as:

<xsl:template match="input[contains-token(@class, 'speed')]"
 mode="ixsl:onchange">
 <xsl:variable name="cab"
 select="ancestor::div[contains-token(@class, 'cab')]"/>
 <xsl:variable name="run" select="$cab//input[@class eq 'run']"/>
 <xsl:variable name="value" select="@value"/>
 <ixsl:set-property object="$cab//input[@type eq 'range']"
 name="value" select="number($value)"/>
 <xsl:for-each select="$cab//span[contains-token(@class, 'value')]">

119

Animations

 <xsl:result-document href="?." method="ixsl:replace-content">
 <xsl:sequence select="string($value)"/>
 </xsl:result-document>
 </xsl:for-each>
 <xsl:if test="ixsl:get($run,'checked')">
 <xsl:variable name="engine" select="$run/@value"/>
 <xsl:for-each select="id($engine)">
 <ixsl:set-attribute name="speed" select="$value"/>
 </xsl:for-each>
 <xsl:call-template name="changeVelocity">
 <xsl:with-param name="engine" select="$engine"/>
 </xsl:call-template>
 </xsl:if>
</xsl:template>

which detects a change in the stop, slow, cruise, fast radio button set. The selected speed is the @value of the set, which
is written into a span element within the cab div and used to set the slider to a suitable point. If the engine is running
(the top lef checkbox checked), then the demanded speed is written as an attribute onto the selected engine object and
then the changeVelocity template is invoked.

The key idea here is to determine how far the current animation has progressed, from which the remaining distance to
travel can be determined. This is computed by a global JavaScript function with the animation object a as argument:

function animProgress(a) {
 if(a.getAttribute("dur")==0 ||
 a.getAttribute("dur")=="indefinite") {
 return 0;
 }
 var startTime;
 try{
 startTime = a.getStartTime();
 } catch(e) {
 return 0;
 }
 var t_ratio=(a.getCurrentTime() - startTime)/a.getSimpleDuration();
 return t_ratio;
}

which calculates the ratio of elapsed to total animation duration. In cases where the animation is not active (for which I
can't nd a simple test), the exception on nding start time is caught. Given the remaining distance and desired speed, a
new duration can be determined and the animation restarted using the keyPoints property to start somewhere down
the animation path, e.g. keyPoints="0.5;1" would be used for a speed change halfway along the track section10.

The animation is restarted by invoking the beginElement() method — the ignoreEvent ag is used to prevent
the implicit endElement() event, triggered before the restart, that would normally be used to signal completion of
traversal of a section, propagating to the XSLT templates. In the case that the locomotive is running in reverse, the key
points are reversed, e.g. keyPoints="0.66;0" would be used for a speed change one-third of the way backwards
through a section.

In the absence of such speed changes a running locomotive involves animation movement along the current section until
the end event is executed, elded by the XSLT template shown earlier, which then starts animation along the next specied
section. In the case of entering points, the state of the point is examined (from the status of the point control in the signal
box!) and the correct path and next section determined for the animation11. When a locomotive enters a swap section,
described above, its internal running in the wrong direction ag is inverted and it passes on to the following section.

A small number of other animation efects have been added. Firstly locomotives have wheels, which can be animated to
rotate at a rate and direction suitable for their diameter and the locomotive's speed, using the animation element:

<animateTransform type="rotate" begin="indefinite"
 attributeName="transform" from="0" to="360"
 dur="…." attributeType="XML" repeatCount="indefinite"/>

10The current animation may itself already involve a “partial” path, as a consequence of a previous change in speed — this is determined from the
existing @keyPoints value on the animateMotion element to determine the “distance to go”.
11Changing a point while a locomotive is moving through it will not efect the locomotive's path.

120

Developments

Secondly, locomotives can be given running sound efects by invoking play() method on an audio element when
they start movement, and can“whistle” when they enter a (zero length) whistle pseudo-track section. The end point of
this development was a case where multiple engines could be run on a layout, stopping, starting , reversing and changing
their speed independently and altering points to move them to diferent sections of the layout:

Figure 19. Three engines running simultaneously

But there is a problem with the isometric view “trick” and automatic path tangent rotation:

Figure 20. On the ceiling

The animation rotation transformation is applied before the isometric projection and our 3D trick no longer works with
signicant rotations. How this may be overcome is discussed in the next section.

7. Developments
There are a small number of developments I have been working on, but at the time of writing they are incomplete. This
section describes these ideas.

7.1. True 3D models and view rotation
The 3D model used so far is a collection of orthogonally arranged rectangular blocks and cylinders, declared in an order
that reects isometric view shadowing. For example an engine frame block is dened before the boiler cylinder, to appear

121

Collision detection, a.k.a. train crashes

underneath it. From this model suitable SVG components can be generated to simulate a 3D view when subjected to
a uniform isometric transformation. But to support a non-orthogonal rotation of such a model about the z-axis, to
overcome the “on the ceiling” efect, the situation becomes somewhat more complex. There are three points to consider:

• What is a suitable graphic for a block or cylinder when rotated by θ degrees about the z-axis? A key requirement is that
the “faces” model of additional styling and content must still be supported.

• As a group of 3D parts is rotated, their obscuration relationships alter and any views must accommodate this. How
should a set of component parts be “depth-ordered” in the direction of the isometric view, when the ensemble is rotated
signicantly?

• How is the appropriate rotated view displayed as a locomotive turns?

Constructing the isometric-prepared components of a rotated block is a little tricky. The top surface is always visible
and can just be rotated as required. Ignoring any visibility of the base, only two of the four vertical sides will be visible
dependent upon rotation change ranges of 45° and 135°. Each visible face is subjected to additional scaling and skew
dependent on the rotation angle, so that it is correctly sized, positioned and any additional content “stays in place”. The
situation for horizontally aligned cylinders is very much more complex, and at the time of writing is work in progress.

To “view-order” an ensemble of rotated components it would be helpful if a (possibly multiple) value can be computed
that can be used as sort keys to arrange the parts into appropriate order using xsl:perform-sort/xsl:sort+.
This can be so for some very simple cases, but in general parts must be pairwise-compared, which requires some sorting
function that uses a compare function, rather than a key-generator. Sadly, XPath sort functions all use a “key” model, so
a generic XSLT higher-order pairwise sorting function may have to be constructed.

Calculating the rotation views on the fly would be catastrophically expensive, so the solution chosen is to generate a series
of groups, each corresponding to a dened angle of rotation and labelled suitably (e.g. class="rotate-45" for a
view rotated by -45°). It would also be possible to generate the set of views oine and include in the runtime. However
they can be sizeable — an interval of 5°, which certainly doesn't appear “smooth” would require 72 separate versions.

Assuming there is such a series of views of an engine, we need to arrange for the display property of the (approximately)
correct rotation view to be switched from none to inline. But we do know for a given locomotive which section it is in and
can map from the proportion of the animation completed to the tangential orientation at that point. (As we use only
straights and circular arcs, the tangent angle is a piecewise linear function of the “section proportion”, running from 0
to 1. This prole is added to the map entry for the section.) Given that the speed of the engine is known, we can thus
predict how long it will be until the current rotation view should be superseded by the next one. This is enabled through
a template rotateTrain which both makes visible the suitable view and schedules a further rotateTrain call
afer a suitable wait.

7.2. Collision detection, a.k.a. train crashes

As designed, my locomotives are ætheral beings, able to glide seamlessly and smoothly through each other. To prevent
this, we need to detect collision or interference. SVG does have some primitive collision detection based on bounding box
overlap, but given the isometric 3D nature of our engines, this is unlikley to be accurate, and certainly over-enthusiastic.
Moreover, normal movement of our engines is both highly restrained, i.e. to track sections, and predictable, as they travel
at known rates.

A simple approach, ignoring engine “size” and treating them as point entities, is to consider only cases where two (or
more) engines are in the same section12, travelling in either the same or opposite directions. Such a case can be checked
when either a locomotive enters a new section, or the speed of an engine is changed. In such circumstances, we know
both where, in distance, each locomotive is, and how fast they are approaching each other. Hence in the case of a
predicted collision we can schedule an action (using ixsl:scheduleAction) to trigger a “crash notication” afer
the required interval. However there is also the diculty of a subsequent speed change altering this — this requires the
ability to delete some of the currently active scheduled actions, which has proved highly problematic.

7.3. Diculties

Apart from the headache-inducing issue of calculating the geometry of the edege of the visible curved surface of a rotated
cyclinder, most of the diculty has been managing the animations and events. In particular it appears that an active
animation cannot be stopped and deleted or restarted without invoking any associated onend event. The temporary
solution, of dubious robustness, uses a global ag to suppress subsequent event propagation.

12Much of nineteenth-century railway signalling development was of course to stop such a situation happening in the rst place.

122

Conclusion

8. Conclusion
I originally built a small tool, using XSLT, that “did the geometry calculations” for a layout I was designing. A graphical
view is always helpful, and generating SVG to do so was straighforward. Developing the isometric view led towards a
more pictorial aspect to the output. Adding very simple animation opened the possibility of building something more
akin to a “train set”, and showed some of the ways controls and active state could be mixed in an XSLT/Saxon-JS/SVG/
browser environment. And this led to the idea of a demonstration at MarkupUK 2018...

The implementation needed a very small number of global JavaScript functions, that were invoked in XSLT/XPath
expressions through the Saxon-JS function mapping namespace http://saxonica.com/ns/globalJS. All
the rest of the code is XSLT3.0, with Saxon-JS extensions, generating all necessary XHTML and SVG structures, with
templates elding and processing events both from interaction and animation. Once up and running, the system is of
course stateful — the speed, direction and current track section of engines, the switched set state of points etc. This state
information is stored as attributes on the DOM tree.

Did it help with the original purpose — designing a garden railway? Well this was the layout design demonstrated at
Markup2018:

Figure 21. The layout as proposed

and this is what currently exists:

123

http://saxonica.com/ns/globalJS

Conclusion

Figure 22. Lady Anne on the Garden Line

Without Saxon-JS this project wouldn't have even been attempted and thanks are due to my colleagues Mike Kay and
Debbie Lockett for the excellence of that product. The author is of course extremely grateful for the many votes cast in
his direction at last year's MarkupUK DemoJam — without them he wouldn't have had to write this paper.

References
[1] Debbie Lockett and Michael Kay. Saxon-JS: XSLT 3.0 in the Browser.. Balisage: The Markup Conference . 2016.

https://doi.org/10.4242/BalisageVol17.Lockett01.

[2] Scalable Vector Graphics (SVG) 1.1 (Second Edition). 2011. World Wide Web Consortium (W3C). https://
www.w3.org/TR/SVG11/.

[3] XSL Transformations (XSLT) Version 3.0. 2017. World Wide Web Consortium (W3C). https://www.w3.org/TR/
xslt-30/.

124

Taking Schematron QuickFix To The Next
Level

Octavian Nadolu, Oxygen XML Editor

Abstract

The Schematron QuickFix (SQF) [http://schematron-quickx.github.io/sqf/spec/SQFSpec.html]
language can be used to improve eciency and quality when editing XML documents. You can dene
actions that will add complex XML structure in your documents, make modications in multiple places,
or actions that will convert an XML structure into another. These changes are made by keeping the
document structure valid and conforming to your project specication, and will help the content writer
add content more easily and without making mistakes.

To build complex actions, you can mix the Schematron QuickFix language with ISO Schematron
[http://schematron.com/], or with diferent versions of XSLT [https://www.w3.org/TR/xslt/all/]
and XPath [https://www.w3.org/TR/xpath/all/], or you can dene your own extensions using
programming languages such as Java. This means that you can perform modications in multiple
external documents, or display dialog boxes to get input from your users, or use complex algorithms for
processing the content of the documents.

The Schematron QuickFix is a modular language. Even though it is simple (it only has four types of
operations that can be performed: add, delete, replace, and string replace), new types of operations can be
created (such as wrap, unwrap, rename, or join). This can be implemented by using abstract quick xes
and by creating libraries of quick xes that can be reused for various diferent XML vocabularies (such as
DITA, DocBook. TEI). By using a library of quick xes, it will help the Schematron QuickFix developers
to create the actions more easily and reuse the quick xes created by others.

This presentation will focus on some interesting use-cases and Schematron QuickFix examples that can
be easily adapted to your projects. The examples will include both abstract quick xes and complex quick
xes that use XSLT and Java.

125

http://schematron-quickfix.github.io/sqf/spec/SQFSpec.html
http://schematron-quickfix.github.io/sqf/spec/SQFSpec.html
http://schematron.com/
http://schematron.com/
https://www.w3.org/TR/xslt/all/
https://www.w3.org/TR/xslt/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/

Introduction

1. Introduction
Schematron is a powerful language, and one of the reasons is because it allows the schema developers to dene there own
custom messages. The messages can also include hints to help the user correct the problem, but this operation must be
performed manually. Correcting the problem manually is inecient and can result in additional problems.

The SQF language allows you to dene actions that will automatically correct the problem reported by Schematron
assertions. This will save you time and money, and will help to avoid the potential for generating other problems.

2. Schematron QuickFix Language
Schematron QuickFix (SQF) is a simple language that allows the Schematron developer to dene actions that will
correct the problems reported by Schematron rules. SQF was created as an extension of the Schematron language. It was
developed within the W3C "Quick-Fix Support for XML Community Group". The rst draf of the Schematron Quick
Fix specication was published in April 2015, second draf in March 2018, and it is now available on the W3C Quick-Fix
Support for XML community group [https://www.w3.org/community/quickx/] page.

The actions dened in a Schematron QuickFix are called operations. There are four types of operations dened in the
SQF language that can be performed on an XML document: add, delete, replace, and string replace. The operations must
perform precise changes in the documents without afecting other parts of the XML document.

Example 1. A Schematron Quick Fix that adds a 'bone' element as child of the 'dog' element

<sch:rule context="dog">
 <sch:assert test="bone" sqf:fix="addBone">
 A dog should have a bone.</sch:assert>
 <sqf:fix id="addBone">
 <sqf:description>
 <sqf:title>Add a bone</sqf:title>
 </sqf:description>
 <sqf:add node-type="element" target="bone"/>
 </sqf:fix>
</sch:rule>

3. Use Cases
3.1. Type of Users

It is important to have quality control over the XML documents in your project. You can do this using a Schematron
schema in combination with other schemas (such as XSD, RNG, or DTD). Schematron solves the limitation that other
types of schema have when validating XML documents because it allows the schema author to dene the tests and control
the messages that are presented to the user. It makes validation problems more accessible to users and it ensures that they
understand the problem.

However, correcting the validation problems in the XML documents can sometimes be dicult for a content writer.
Many content writers are not XML experts, but they know the context of the document very well and they are experts in
their domain. If a problem occurs when they write content in the document, they need to x it correctly without adding
new ones.

On the other hand, an XML expert knows the syntax very well and knows how to x the problem, but they may not be
familiar with the domain of the content writer. In this case, since the XML expert and content writer will need to work
together to correct the problems, this will introduce extra costs and take more time.

Using SQF, you can provide in-place actions to help the content writer correct the problems by themselves without
involving the XML expert, and without producing new errors. This will solve the problem faster and companies will
spend less money. The XML expert can focus on developing new rules and quick xes for the content writer.

3.2. Generate Content Using XPath
The content inserted by a Schematron quick x operation can be static, such as text or tags specied in the quick x
operation, or can be generated dynamically depending on the current node content or depending on the other nodes
from the document. To generate dynamic content, you can use XPath expressions in the value of the @select" attribute
for the sqf:add, sqf:replace, or sqf:stringReplace operations.

126

https://www.w3.org/community/quickfix/
https://www.w3.org/community/quickfix/
https://www.w3.org/community/quickfix/

Change Text Using Regular Expressions

By using XPath expressions, you can perform complex operations and generate content depending on the existence of
some elements in the document or use content from other documents. You can benet from more than 200 XPath built-
in functions. There are functions for string values, numeric values, date and time comparison, node manipulation, and
much more.

For example, perhaps you have a rule that checks if a section element has an @id attribute specied and reports any
occurrences as a problem. Then, you can have a quick x that adds an @id attribute on the current section element. The
value of the attribute can be created by using the title section and removing any special characters or spaces from the title.
In case the section does not have a title, you can generate a random value for the id.

Example 2. Use the title value as ID or generate a random ID

<sqf:fix id="addID">
 <sqf:description>
 <sqf:title>Add ID to the current section</sqf:title>
 </sqf:description>
 <sqf:add node-type="attribute" target="id"
 select="if (exists(title) and string-length(title) > 0)
 then substring(lower-case(replace(replace(normalize-space(string(title)),
 '\s', '_'),
 '[^a-zA-Z0-9_]', '')), 0, 50)
 else generate-id()"/>
</sqf:fix>

In case you want to add an @id attribute on all the section elements from the document, you can create a quick x that
matches all the selection elements that do not have an id attribute. To do this, you need to create a similar quick x as the
previous one and just add a match attribute on the sqf:add operation with the value: //section[not(@id)].

Example 3. Match all the section elements from the document and add an ID

<sqf:fix id="addID">
 <sqf:description>
 <sqf:title>Add ID to the all entries from document</sqf:title>
 </sqf:description>
 <sqf:add match="//section[not(@id)]" node-type="attribute" target="id"
 select="if (exists(title) and string-length(title) > 0)
 then substring(lower-case(replace(replace(normalize-space(string(title)),
 '\s', '_'),
 '[^a-zA-Z0-9_]', '')), 0, 50)
 else generate-id()"/>
</sqf:fix>

You can also use XPath functions such as document-uri(/) in case you want to add an id attribute with the same value
as the le name.

Example 4. Get the current document le name and use it as ID

<sqf:fix id="addFileID">
 <sch:let
 name="reqId"
 value="substring-before(tokenize(document-uri(/), '/')[last()], '.')"/>
 <sqf:description>
 <sqf:title>Set "<sch:value-of select="$reqId"/>" as ID</sqf:title>
 </sqf:description>
 <sqf:add node-type="attribute" target="id" select="$reqId"/>
</sqf:fix>

3.3. Change Text Using Regular Expressions

To make changes in text content, you need to use regular expressions. The sqf:stringReplace operation allows you to
specify a regular expression to nd sub-strings of text content and replace them with nodes or other strings. The regular
expression need to be specied in the value of the regex attribute.

127

Using XSLT to Generate Content

For example, suppose you have a rule that checks if a link is added as text content and not marked as a link. You can create
a quick x replace the text link with an xref element that has the value of the text link. This will allow you to automatically
x the links from the text and mark them as clickable links.

Example 5. Create a clickable link from a text link

<sqf:fix id="convertToLink">
 <sqf:description>
 <sqf:title>Convert '<sch:value-of select="$linkValue"/>' text link
 to xref</sqf:title>
 </sqf:description>
 <sqf:stringReplace regex="(http|www)\S+">
 <xref href="{$linkValue}" format="html"/>
 </sqf:stringReplace>
</sqf:fix>

To get the value of the link from the text content, you can use the xsl:analyze-string instructions. This will allow you to
process the string content and obtain the content that you need. Then you can make the change in the document using
the stringReplace operation.

Example 6. Obtain the value of the link from text

<xsl:variable name="linkValue">
 <xsl:analyze-string select="." regex="(http|www)\S+">
 <xsl:matching-substring>
 <xsl:value-of select="regex-group(0)"/>
 </xsl:matching-substring>
 </xsl:analyze-string>
</xsl:variable>

Therefore, using regular expressions and the sqf:stringReplace operation, you can tag content or you can replace text
content with other text content.

3.4. Using XSLT to Generate Content

A Schematron QuickFix can also be used to improve eciency when adding content in XML documents. You can dene
actions that will automatically add a new XML structure in the document at a valid location, or actions that will convert
an XML structure into another. These types of actions will help the content writer add content more easily and without
making mistakes.

Using XSLT, you can create complex actions. For example, actions that will correct a table layout and use complex XSLT
processing, or actions that use data from other documents or from a database. This will allow the content writer to focus
on the content of the document while the quick xes will help them to easily insert XML structure or to x various issues
that can appear during editing.

If you have a rule that checks if a table layout is correct and you have the same number of cells on each row, you can create
a quick x that adds the missing cells. To do this, you can use XSLT to calculate and generate the exact number of cells
that are missing on each row.

Example 7. Add the missing cells from a table

<sqf:fix id="addCells">
 <sqf:description>
 <sqf:title>Add enough empty cells on each row</sqf:title>
 </sqf:description>
 <sch:let name="reqColumsNo" value="max(.//row/count(entry))"/>
 <sqf:add match="row" position="last-child">
 <sch:let name="columnNo" value="count(entry)"/>
 <xsl:for-each select="1 to xs:integer($reqColumsNo - $columnNo)">
 <entry/>
 </xsl:for-each>
 </sqf:add>
</sqf:fix>

128

Ignore Schematron Checks

3.5. Ignore Schematron Checks
Schematron allows you to dene your own custom validation rules for XML documents. You can even set diferent
severities for the reported problems, such as fatal, error, warn, info. But in some situations, the users want to ignore some
of this rules. For example, if the problem severity is warn, maybe it is not something important, or if the problem severity
is info, maybe is more like a guideline for the users.

There is no built-in implementation to ignore reported Schematron problems. But this mechanism can be implemented
in diferent ways using the current Schematron support and quick xes. To do this, you need to uniquely determine the
rule that you want to ignore and you can do this by assigning an ID to the rule check. Then you need to store this ID in
the le or in a separate le or option to avoid triggering the Schematron check in the future. You can assign the ID to a
rule element. This means that you will be able to ignore all the asserts from that rule. Alternatively, you can assign an ID
to each assert/report element, and this means that you will be able to ignore each assert/report from the rule separately.

In my implementation, I decided to assign an ID for each assert/report check. The ID is specied in the value of the
ruleCheckId variable, and it will be used by the isRuleIgnored() function to check if the current rule is marked as ignored.
A better way to implement this is to use the id attribute value specied on the assert/report element, but this means that it
will not work with the current Schematron implementation that does not process this ID value. In the following example,
the report is triggered only if the boldCheck rule is not marked as ignored.

Example 8. Schematron rule that is triggered only if is not ignored

<sch:let name="ruleCheckId" value="'boldCheck'"/>
<sch:report test="not(func:isRuleIgnored(., $ruleCheckId)) and exists(b)"
 sqf:fix="resolveBold ignoreRule ignoreRuleGlobal" role="warn"> Bold
 element is not allowed in title. </sch:report>

To store the ID of the rule check that is ignored in the XML document, I used a processing instruction with the name
SuppressRule. The processing instruction is added before the current node, in case you want to ignore only the current
rule check, or at the end of the document in case you want to ignore the current rule in the entire document. Another
solution would be to store this ID in a separate document to avoid adding processing instructions in the edited XML
document.

The following XSLT function checks if there is a processing instruction with the name SuppressRule before the current
element or at the end of the document, and if the ID of the current rule is specied in the processing instruction. It
returns true if the rule is specied as ignored.

Example 9. XSLT function that veries if an assert/report is marked as ignored

<xsl:function name="func:isRuleIgnored" as="xs:boolean">
 <xsl:param name="node"/>
 <xsl:param name="ruleId"/>
 <xsl:value-of
 select="($ruleId =
 $node/preceding-sibling::processing-instruction()[name() =
 'SuppressRule']/tokenize(., ' ')
 or $ruleId =
 /processing-instruction()[name() =
 'SuppressRule']/tokenize(., ' '))"/>
</xsl:function>

To mark a rule as ignored, you can use quick x actions. You can dene a quick x that will marked as ignore the current
rule check by adding a processing instruction before the current element, with the name SuppressRule and the value of
the rule ID. In case the processing instruction is already added for other ignored rules, it will concatenate the current rule
ID to the existing ones.

Example 10. Quick x that adds the current check to the ignore list

<sqf:fix id="ignoreRule" role="delete">
 <sqf:description>
 <sqf:title>Ignore current rule</sqf:title>
 </sqf:description>
 <sch:let
 name="ignoredRulePI"

129

SQF User Input Dialog

 value="preceding-sibling::processing-instruction()[name() = 'SuppressRule']"/>
 <sqf:delete match="$ignoredRulePI" use-when="$ignoredRulePI"/>
 <sqf:add position="before">
 <xsl:processing-instruction
 name="SuppressRule"
 select="concat($ignoredRulePI, ' ', $ruleCheckId)"/>
 </sqf:add>
</sqf:fix>

You can also dene a similar quick x action that will ignore the current rule check for the entire document by adding
the processing instruction at the end of the document. You can also dene a quick x action that will add the rule ID in
a separate le and specify if the rule is ignored for the current le or for the entire project.

3.6. SQF User Input Dialog

Sometimes, when executing a quick x action, you need to interact with the user and get input from them, or make
them choose between diferent options. The quick x specication denes the sqf:user-entry for such interactions. The
sqf:user-entry element denes a value that must be set manually by the user.

If you need multiple values to be specied by the user, you can dene multiple user-entry elements. For each user-
entry, a dialog box will be displayed where the user can specify values. The user-entry element can be used as an
XPath variable where the XPath variable is the name of the user-entry.

In the following example, the quick x action denes two user entries, one that will allow the user to specify the value of
the hypertext link, and one the will allow them to specify the link title. When the quick x will be executed, two dialog
boxes will be displayed, one for the link value and a second one for the link title. The order of the dialog boxes is dene
by the order of the dened user entries in the quick x.

Example 11. Quick x action that presents two user entry dialogs

<sqf:fix id="addAnchorAndTitle">
 <sqf:description>
 <sqf:title>Surround image with a hypertext link</sqf:title>
 </sqf:description>
 <sqf:user-entry name="href">
 <sqf:description>
 <sqf:title>Enter anchor href value:</sqf:title>
 </sqf:description>
 </sqf:user-entry>
 <sqf:user-entry name="linkTitle">
 <sqf:description>
 <sqf:title>Enter link title:</sqf:title>
 </sqf:description>
 </sqf:user-entry>
 <sqf:replace>

 <xsl:copy-of select="."/>

 </sqf:replace>
</sqf:fix>

In a quick x, you can also use you own extensions using programming languages such as Java. This will allow you to
present your own custom dialog boxes to get input from the user or make complex processing that is not possible with
the current Schematron or XSLT support.

For example, you can invoke the JFileChooser dialog box to allow the user to choose a le from the le system, and then
use the le path in the document. To do this, you need to create a quick x action that will call an XSL template that will
present the dialog box and obtain the selected value from the user.

Example 12. Quick x that displays a browse dialog

<sqf:fix id="addSrc">
 <sqf:description>

130

Abstract Quick Fixes

 <sqf:title>Browse and add @src attribute</sqf:title>
 </sqf:description>
 <sqf:add node-type="attribute" target="src">
 <xsl:call-template name="browse"/>
 </sqf:add>
</sqf:fix>

To display the dialog box from XSLT, you need to create a new instance using a new() call, and then use the
showOpenDialog() to show a dialog box that will allow the user to choose a le. Depending on whether the user decides
to cancel the dialog box or choose a le, you can obtain the current selected le using the getSelectedFile() call. The result
of the template will be sent to the quick x action that will inset it in the document.

Example 13. Quick x that displays a browse dialog

<xsl:template name="browse">
 <xsl:variable name="dialog" select="jBrowse:new()"/>
 <xsl:variable
 name="result"
 select="jBrowse:showOpenDialog($dialog, $dialog)"/>
 <xsl:if test="$result = 0">
 <xsl:value-of
 select="jBrowse:getSelectedFile($dialog)"/>
 </xsl:if>
</xsl:template>

4. Abstract Quick Fixes
The Schematron QuickFix language is a simple language, and has just four types of operations that can be performed
(add, delete, replace, and string replace). Being a simple language, it is easy to learn and use, and also easy to implement
by applications.

Sometimes the developers that create the quick xes need to use other types of operations (such as wrap, unwrap, rename,
or join). They expect to have these operations dened in the language. Dening more operations in the language will help
them create the quick xes more easy, but this means that the language will be more complicated to learn and harder to
be implemented by applications. A solution to this problem is to dene a library of generic quick xes that can be used
for other types of operations.

A library of quick xes can be implemented using abstract quick xes. An abstract quick x can be dened as a quick x
that has abstract parameters dened at the beginning of an sqf:fix element.

Example 14. Schematron abstract quick x that can be used to rename a generic element

<sqf:fix id="renameElement" role="replace">
 <sqf:param name="element" abstract="true"/>
 <sqf:param name="newName" abstract="true"/>
 <sqf:description>
 <sqf:title>Rename '$element' element in '$newName'</sqf:title>
 </sqf:description>
 <sqf:replace
 match="."
 target="$newName"
 node-type="element"
 select="node()"/>
</sqf:fix>

An abstract quick x can be instantiated from an abstract pattern. The pattern must have all the parameters declared
in the quick x, and the quick x must declare all the abstract parameters that are used. Abstract parameters cannot be
used as normal XPath variables. The reference of the abstract parameter will be replaced by the value specied in the
abstract pattern.

Example 15. Schematron abstract pattern that reference an abstract quick x

<sch:pattern id="elementNotAllowed" abstract="true">

131

Multilingual Support in SQF

 <sch:rule context="$element">
 <sch:assert test="false()" sqf:fix="renameElement">
 Element '$element' not allowed, use '$newName' instead.
 </sch:assert>
 </sch:rule>
</sch:pattern>

The abstract pattern can be instantiated by providing diferent values for the parameters. Therefore, you can quickly
adapt to multiple variants of XML formats and provide rules and quick xes that will allow the user to correct the
problems.

Example 16. Schematron abstract pattern instantiation

<sch:pattern is-a="elementNotAllowed">
 <sch:param name="element" value="orderedlist"/>
 <sch:param name="newName" value="itemizedlist"/>
</sch:pattern>

Another solution for providing other quick x actions without using abstract patterns is to
use the sqf:call-fix [http://schematron-quickx.github.io/sqf/publishing-snapshots/March2018Draf/spec/
SQFSpec.html#param.call-x] element.

5. Multilingual Support in SQF
The second draf of the Schematron QuickFix specication comes with an important addition, the localization concept
for quick xes. It is based on the Schematron localization concept, but it is more exible.

A new attribute was added for the sqf:title and sqf:p elements, the @ref attribute. In the value of the @ref
attribute, you can specify one or more IDs that point to diferent translations of the current phrase. The specication
does not restrict the implementations of the @ref attribute to a specic reference structure.

Example 17. Schematron QuickFix that has multilingual support

 <sqf:fix id="addBone">
 <sqf:description>
 <sqf:title ref="fix_en fix_de">Add a bone</sqf:title>
 <sqf:p ref="fix_d_en fix_d_de">Add a bone as child element</sqf:p>
 </sqf:description>
 <sqf:add node-type="element" target="bone"/>
 </sqf:fix>

One possible implementation of the multilingual support in SQF is to use the Schematron diagnostics element.
You can dene a diagnostic for each referenced id and specify the language of the diagnostic message using the
xml:lang attribute on the sch:diagnostic element or on its parent.

Example 18. Schematron diagnostics

 <sch:diagnostics>
 <sch:diagnostic
 id="fix_en"
 xml:lang="en">Add a bone</sch:diagnostic>
 <sch:diagnostic
 id="fix_de"
 xml:lang="de">Fügen Sie einen Knochen hinzu</sch:diagnostic>
 </sch:diagnostics>

This implementation conforms with the Schematron standard that also uses diagnostic for localization. It is easier to
translate the messages because the Schematron messages and quick x messages are kept together, and another important
aspect is that it will be the same implementation used for both Schematron and SQF messages.

There are also some issues with this implementation. One of them is that you cannot have IDs with the same name in your
document because the diagnostic uses XML IDs. Another issue is that SQF will depend on the Schematron language
and cannot be encapsulated separately.

132

http://schematron-quickfix.github.io/sqf/publishing-snapshots/March2018Draft/spec/SQFSpec.html#param.call-fix
http://schematron-quickfix.github.io/sqf/publishing-snapshots/March2018Draft/spec/SQFSpec.html#param.call-fix
http://schematron-quickfix.github.io/sqf/publishing-snapshots/March2018Draft/spec/SQFSpec.html#param.call-fix

Generate Quick Fixes Dynamically

Another implementation of quick x localization is to use Java Property Files. In this case, the localized text phrases should
be stored in external les, grouped by language. These les should be placed parallel to the Schematron schema with
the name pattern ${fileName}_${lang}.xml. The ${fileName} should be the name of the Schematron
schema but without the extension. The @ref attribute from the quick x must reference the property key.

Example 19. Java Property File for German translation

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="dog.addBone.title">Füge einen Knochen hinzu</entry>
 <entry key="dog.addBone.p">Der Hund wird einen Knochen erhalten.</entry>
</properties>

In contrast to the references to sch:diagnostic elements, in this case, it is not necessary to make any changes
in the Schematron schema to introduce a new language. You just have to add a le with the name (for example
localized_fr.xml) in the same folder of the Schematron le (for example localized.sch).

However, this needs a diferent implementation than the standard Schematron, and the Schematron messages and the
SQF messages will be in diferent locations.

6. Generate Quick Fixes Dynamically
Another important addition in the second draf of the Schematron QuickFix specication is the possibility to dene
generic quick xes. Using a generic quick x, the developer can generate multiple similar xes using the values provided
by an XPath expression.

In the rst draf of the SQF specication, it was not possible to have a dynamic amount of quick xes for a Schematron
error. The developer should specify the quick xes presented for a Schematron error. They could only control whether
or not a quick x will be presented to the user by using the @use-when attribute.

To create a generic quick x, the SQF developer needs to set the use-for-each attribute for the sqf:fix element.
The value of the use-for-each attribute must be an XPath expression. For each item of the evaluated XPath
expression, a quick x is provided to the user. The context inside of the quick x will be the current Schematron error
context. To access the value of the current item from the XPath expression, a built-in variable $sqf:current can
be used.

Example 20. A Generic QuickFix that provides a quick x to remove each item from a list

<sqf:fix id="removeAnyItem" use-for-each="1 to count(li)">
 <sqf:description>
 <sqf:title>Remove item #<sch:value-of select="$sqf:current"/></sqf:title>
 </sqf:description>
 <sqf:delete match="li[$sqf:current]"/>
</sqf:fix>

Using generic quick xes, the SQF developer can now provide a dynamic number of x actions depending on a set of
values from the current document or they can use an XPath expression to get the values from external documents.

7. Conclusion
Schematron has become a very popular language in the XML world. In the last few years, Schematron started to be used
more and more and in numerous domains. One of the reasons Schematron started to become more popular is because
you now also have the ability to dene actions that will allow the user to correct the problem, rather than just presenting
an error message. SQF has made Schematron more powerful and became a powerful language in itself.

SQF has also evolved by adding the multilingual support or the support to generate quick xes dynamically. The
specication has became more accurate and the implementations more stable. Developers are discovering new ideas for
working with Schematron quick xes even outside of Schematron language.

Bibliography
[SQF Spec] Schematron Quick Fix specication, http://schematron-quickx.github.io/sqf

133

http://schematron-quickfix.github.io/sqf

Conclusion

[SQF Site] : Schematron Quick Fix ocial site http://www.schematron-quickx.com/

[SCH] Schematron ocial site http://schematron.com/

[SCH Spec] Schematron specication https://standards.iso.org/ittf/PubliclyAvailableStandards

134

http://www.schematron-quickfix.com/
http://schematron.com/
https://standards.iso.org/ittf/PubliclyAvailableStandards

Accessibility Matters
Tony Graham, Antenna House, Inc.

Abstract

XML, by itself, does not have any support for accessibility. XML is extremely exible, but it needs to ex
in the right directions if it is going to support the information necessary to make a document accessible.
This is a guided tour of some of the features of the HTML, Web Content Accessibility Guidelines
(WCAG), and PDF/UA (Universal Accessibility) standards. It concentrates on le formats rather than
User Agent behaviour, since the information needed to make accessible HTML or PDF usually needs to
be included in, or able to be inferred from, the source XML.

However, it’s rarely the raw XML that is presented to users. This paper also strays into some aspects of
styling the content to make it more accessible.

135

What is accessibility?

1. What is accessibility?
Accessibility is the inclusive practice of making content more accessible to people with disabilities. Accessibility “involves
a wide range of disabilities, including visual, auditory, physical, speech, cognitive, language, learning, and neurological
disabilities. Accessible content is also more usable by older individuals with changing abilities due to aging and will ofen
improve usability for users in general.” [WCAG2.1]

2. Standards for accessibility
Relevant standards include:

• Matterhorn Protocol [Matterhorn]

• PDF File 508 Checklist (WCAG 2.0 Refresh) https://www.hhs.gov/web/section-508/making-
files-accessible/checklist/pdf

• PDF Techniques for WCAG 2.0 https://www.w3.org/TR/2014/NOTE-WCAG20-
TECHS-20140408/pdf.html

• Web Content Accessibility Guidelines (WCAG) 2.1 [WCAG2.1]

3. Accessibility in, accessibility out
The well-known acronym GIGO for “Garbage in, garbage out” [GIGO] refers to poor-quality input producing poor-
quality output. The corollary for accessibility is that good accessibility in your output requires that the information
necessary for that good accessibility needs to be present in your data. Chandi Perera of Type likens adding accessibility
at the end to baking a cake and then trying to take the nuts out of the cake when serving because someone in the room
has a nut allergy [Perera]. Trish Ang of Slack put it more simply: “it’s easier to add the blueberries in before you’ve baked
the mun.” [Ang]

Sofware, even the sofware doing the nal formatting, can help by adding some of the accessibility information. In a
JATS-List post, Bruce Rosenblum of Inera stated that his conversion sofware has “been setting scope attributes in JATS
XML les for years for customers who need section 508 compliance and it's met their requirements.” [Rosenblum]
However, relying on sofware at the end of the process to full the letter, but not the spirit, of accessibility requirements
can, to continue the food analogies, leave everyone with a bad taste in their mouth.

One of the best known accessibility requirements for web pages is to provide alternate text for images and links.
Formatting sofware such AH Formatter can include alternate text when generating Tagged PDF output, but a formatter
can only work with what’s in its XSL-FO or HTML input. The AH Formatter Online Manual notes “It is the FO/
HTML creator’s responsibility to provide meaningful alternate text.” [TaggedPDF] Since the formatter can’t stop and
ask for the input to be edited and then resume, so it has to take increasingly desperate steps to nd alternate text to use
for an element:

• If the axf:alttext property is present and not empty, its value is used.

• Otherwise, if the element contains text, that text is used.

• Otherwise, if the source is HTML and the element has a title property, its value is used.

• Otherwise, the value of the role property, if present and not empty, is used.

• Otherwise, a single space character (U+0020) is used.

The role property is a poor alternative, since it is not designed for use as alternate text, and, obviously, a single space
character is even less meaningful, but if the source document does contain meaningful accessibility information, then
that accessibility information can be included in the output.

4. HTML
Source XML in formats such as DocBook, JATS, or DITA are ofen transformed into HTML for delivery, inclusion in an
EPUB, or for formatting. HTML may also be used as the source document. HTML source documents may likewise be
transformed into diferent HTML for delivery. The output HTML may include, for example: a new or updated Table of
Contents; changed or additional metadata; or, for use with CSS Paged Media, additional copies of content to be removed
from the ow and used in running headers and footers.

136

Tagged PDF

The rst step in making accessible HTML is to use the most appropriate element whenever possible.

How HTML is presented in the browser, including dynamic content, user interface controls, and accessibility APIs, is
out of scope for this paper. Important standards in this area include WAI-ARIA 1.1 [WAIARIA] and the rest of the WAI-
ARIA 1.1 suite of specications [WAIARIASUITE].

5. Tagged PDF
“Tagged PDF” is not a separate PDF specication. It refers to PDF that includes additional information about the logical
structure of the document. Tagged PDF was rst dened in PDF 1.4. Later versions of the PDF specication added more
tag (‘Structure Element’) types and more properties of Structure Elements. PDF 2.0 [PDF2.0] added some new tags and
deprecated some of the existing tags.

The text, graphics, and images in Tagged PDF can be extracted and reused for other purposes. For example, to make
content accessible to users with visual impairments. PDF/UA les (see Section 6 [139]) are Tagged PDF les that also
conform to additional requirements.

AH Formatter embeds PDF tags (‘StructElem’) for XSL Formatting Object elements as shown in Table 1 [137]. Other
XSL-FO formatters have similar mappings.1

Table 1. XSL Formatting Objects and PDF tags

FO element PDF ‘Structure Element’ Comment
fo:root Document
fo:page-sequence Part
fo:ow Sect
fo:static-content Sect
fo:block P or Div P when it has the content of inline-level,

otherwise Div
fo:block-container Div or Sect Sect when absolute-position="xed" or

"absolute", otherwise Div
fo:inline Span or Reference Reference when the child of fo:footnote,

otherwise Span
fo:inline-container Span
fo:leader Span
fo:page-number Span
fo:page-number-citation Span
fo:page-number-citation-last Span
fo:scaling-value-citation Span
fo:index-page-citation-list Span
fo:bidi-override Span
fo:footnote The footnote-reference-area embeds a Sect that

contains all the footnotes on the page
fo:footnote-body Note
fo:oat Sect
fo:external-graphic Figure or Formula Formula in case of MathML, otherwise Figure
fo:instream-foreign-object Figure or Formula Formula in case of MathML, otherwise Figure
fo:basic-link Link
itemizedlist L
listitem LI
listitem-label Lbl
listitem-body LBody
fo:table Table
fo:table-caption Caption
fo:table-header THead

1The information provided by other formatters, however, was either incomplete [FOP] or not in a format that could just be pasted into this paper
[XEP].

137

Specialised PDF tags

FO element PDF ‘Structure Element’ Comment
fo:table-footer TFoot
fo:table-body TBody
tr TR
td TH or TD TH within fo:table-header, otherwise TD
axf:form-eld Form
axf:ruby Ruby
axf:ruby-base RB
axf:ruby-text RT

AH Formatter embeds PDF tags (‘StructElem’) for HTML/CSS elements and pseudo-elements as shown in the following
table:

Table 2. HTML elements and PDF tags

HTML element PDF ‘Structure Element’
html Document
div Div
h1 H1
h2 H2
h3 H3
h4 H4
h5 H5
h6 H6
p P
ul L
ol L
li LI
li::marker Lbl
dl L
dt Lbl
dd LBody
blockquote BlockQuote
caption Caption
table Table
tr TR
td TD
th TH
thead THead
tfoot TFoot
tbody TBody
ruby Ruby
rb RB
rt RT
span Span
img Figure
a[href] Link
other block elements Div
other inline elements Span

5.1. Specialised PDF tags

When you generate PDF/UA or Tagged PDF output, the formatter maps each FO or each HTML element in the source
to an equivalent ‘Structure Element’ in the PDF. However, there are several specialized Structure Elements that do not
have correspondingly specialized FOs or HTML elements.

138

PDF/UA

5.1.1. AH Formatter

In some cases, AH Formatter will map a general-purpose FO to the specialized Structure Element based on the context: for
example, fo:inline ordinarily maps to ‘Span’, but the fo:inline child of fo:footnote maps to ‘Reference’
since the fo:inline is formatted to produce the footnote citation. Otherwise, to override the default mapping, specify
the Structure Element name in the axf:pdftag property in XSL-FO or the -ah-pdftag property in CSS.

5.1.2. FOP

FOP implements a default mapping from FO type to Structure Element type, but the documentation [XEP] provides
only three example mappings. Individual FOs may have the default mapping overridden using the role property.

5.1.3. XEP

XEP [XEP] provides two mechanisms for overriding its default mappings from FO to Structure Element name.
The default mappings of each FO type to a Structure Element name may be overridden by specifying a custom
rolemap.xml le. Individual FOs may have the default mapping overridden using the rx:pdf-structure-
tag extension attribute. The allowed values are ‘H1’, ‘H2’, ‘H3’, ‘H4’, ‘H5’, ‘H6’, ‘P’ , ‘TH’, ‘TR’ and ‘Artifact’. When
the rx:pdf-structure-tag value is ‘Artifact’, an additional rx:artifact-type attribute may be specied.
Its allowed values are ‘Pagination’, ‘Page’ and ‘Layout’. When the rx:artifact-type value is ‘Pagination’, an
additional rx:artifact-type attribute may be specied. Its allowed values are ‘Header’, ‘Footer’ and ‘Watermark’.

6. PDF/UA
PDF/UA, dened in ISO 14289-1, is the specication intended for improving the accessibility of PDF based on the
ISO 32000-1 (PDF 1.7) specication. ISO 14289-1 denes separate requirements for the PDF le format, behaviour of a
conforming reader, and behaviour of Assistive Technology (AT) devices. Only the le format requirements are in scope
for this paper.

The main features of PDF/UA le format requirements are:

• Contents must be tagged in logical reading order.

• Meaningful graphics, annotations and numerical formulas must include alternate text descriptions.

Alternate text descriptions for graphics or numerical formulas can be specied by the -ah-alttext property, links
can be specied by the ‘-ah-annotation-contents’ property.

• Security settings must allow assistive technology to have access to the content.

• Including bookmarks in the PDF/UA is recommended.

• Annotations, links and multimedia may be included.

• The language of the document must be specied.

• All fonts must be embedded.

6.1. Matterhorn Protocol

The Matterhorn Protocol, published by the PDF Association, is a checklist of all the ways that it is possible for a PDF le
to not conform to PDF/UA. The Matterhorn Protocol document consists of 31 Checkpoints comprised of 136 Failure
Conditions. Some failure conditions can be checked programmatically, but others require human review.

139

PAC 3 PDF/UA checker

Figure 1. Matterhorn Protocol failure conditions for tables

6.2. PAC 3 PDF/UA checker

PDF Accessibility Checker 3 (PAC 3)2 by Access For All is a freeware utility for Windows that checks PDF les for PDF/
UA conformance. The program implements the Matterhorn Protocol checks. When you open a PDF le in PAC 3, the
program runs its checks and shows a summary of the results. Since there is no interactive checking, the program can only
warn about some of the failure conditions that require human checking.

2http://www.access-for-all.ch/en/pdf-lab/536-pdf-accessibility-checker-pac-3.html

140

http://www.access-for-all.ch/en/pdf-lab/536-pdf-accessibility-checker-pac-3.html

Common Structures

Figure 2. PAC 3 PDF/UA checker

7. Common Structures
This section discusses how to represent structures that are commonly found in text documents as HTML, Tagged PDF,
or PDF/UA (as applicable) for best accessibility.

7.1. Language indication

Correctly identifying the language assists assistive technologies.

7.1.1. HTTML

141

Part, Article, Section, or Division

7.2. Part, Article, Section, or Division

There are multiple Structure Element types for representing the top-level hierarchy of the document:

Table 3. PDF tags for top-level structure of a document

Structure type Description
Document A complete document
Art A relatively self-contained body of text with a single

narrative. An article should not contain another article.
Sect A container for grouping related elements
Div A generic block-level element or group of elements

By default, AH Formatter maps fo:root to ‘Document’, fo:page-sequence to ‘Part’, fo:flow to ‘Sect’, and
both para-container and any para that contains only block-level FOs to‘Div’. It is possible, for example, to use
axf:pdftag to map the higher-level para-container and para to ‘Sect’ if that better represents the structure
of the document or to map fo:root to ‘Art’ if the document is a single article.

7.3. Headings

Headings are usually indicated by increasing the font size, font weight, or the space around the title, but these visual
diferences may not be apparent to a person using Assistive Technologies. When the document is ‘strongly structured’ (the
document uses grouping elements such as ‘Art’, ‘Sect’, and ‘Div’ to represent the organization of the material) and the
heading is always and only the rst child of the grouping element, then use ‘H’ on the FO for the heading. When the
document is not strongly structured, use the ‘H1’ to ‘H6’ Structure Elements to indicate heading levels.

When generating PDF/UA:

• Heading levels beyond ‘H6’ are allowed: for example, ‘H7’, and so on.

• A document may use either only ‘H’ Structure Elements or only ‘H1’ to ‘H6’ Structure Elements (and beyond).

• When using numbered heading levels:

• The rst heading must be ‘H1’.

• More than one instance of any heading level may be used.

• There cannot be gaps in the descending heading level sequence: for example, ‘H1’ then ‘H2’ then ‘H3’ is a valid
sequence, but ‘H1’ then ‘H3’ is not.

• The heading level sequence can increment without restarting at ‘H1’ if that reects the document structure. For
example, ‘H1’, ‘H2’, ‘H3’, ‘H2’, ‘H3’, ‘H4’, ‘H3’ is a valid sequence.

7.4. Table of Contents

A Table of Contents is more likely to be generated on output than to be included in source XML. On the other hand, a
HTML document that is not transformed before (or during) rendering may include the Table of Contents in the source
document.

7.4.1. HTML

HTML does not include any semantic elements for a Table of Contents.

7.4.2. Tagged PDF

Use ‘TOC’ for a Table of Contents. The structure of a ‘TOC’ is similar to, but more exible than, the structure of
fo:bookmark-tree: a ‘TOC’ Structure Element may contain ‘TOCI’ (Table of Contents item) and ‘TOC’ entries.
A ‘TOCI’ may contain any combination of ‘Lbl’, ‘Reference’, ‘NonStruct’, ‘P’, and ‘TOC’ Structure Elements.

Use ‘TOC’ for the block containing the Table of Contents. Use axf:pdfag="TOCI" for each entry in the Table of
Contents. When the Table of Contents represents a hierarchy, use a block with ‘TOC’ for each level of the hierarchy.

142

Index

Within each Table of Contents entry, use ‘Lbl’ for the title, ‘NonStruct’ for the leader or other content between the title
and the page number, and use ‘Reference’ for the page number.

7.5. Index

Use ‘Index’ for the block containing the index.

7.6. Footnote

7.6.1. HTML

HTML does not have a semantic element for footnotes. [IDIOMS]

7.6.2. Tagged PDF

‘Note’is the inline-level Structure Element for explanatory text such as a footnote or an endnote. AH Formatter
automatically tags fo:footnote-body as ‘Note’. However, ‘Note’ is dened in PDF 1.7 as an inline-level Structure
Element, whereas an fo:footnote-body contains block-level FOs. As such, PDF/UA that is generated from XSL-
FO that contains footnotes will be agged by a PDF/UA checker.

Structure Elements for notes have been revised in PDF 2.0 []. PDF 2.0 has removed‘Note’ and added ‘FENote’, which
is allowed at grouping, block, and inline levels.

7.7. Endnote

7.7.1. HTML

HTML does not have a semantic element for endnotes.

7.7.2. Tagged PDF

‘Note’is the inline-level Structure Element for explanatory text such as a footnote or an endnote. There is no FO
specically for endnotes, so use ‘Note’ for the endnote text.

7.8. Tables

Representing tabular data in XML is awkward enough without also adding accessibility features. Tables seem
straightforward when they are just rows that each have the same number of columns, but real-world tables have cells
that span rows and/or columns, table head rows, and table cells that act as headers for other cells in the same row or in
following rows. Imagine trying to make sense of all of those when you can’t see the formatted table.

In this contrived example table (shamelessly borrowed from HTML 5.3 [TH]), the bold text (which you might not be
able to see) acts as a header for cells below and/or to the right of the header cell:

Table 4. Measurement of legs and tails in Cats and English speakers

ID Measurement Average Maximum
Cats

93 Legs 3.5 4
10 Tails 1 1

English speakers
32 Legs 2.67 4
35 Tails 0.33 1

The following gure shows the relationships:

143

Tables

Figure 3. Scope in sample table

7.8.1. HTML

HTML (since at least HTML 4.01) supports a ‘scope’ attribute for cells to which a header cell applies. The HTML 5
markup for the table is shown below:

<table>
 <caption>Measurement of legs and tails in Cats and English
speakers</caption>
 <thead>
 <tr> <th> ID <th> Measurement <th> Average <th> Maximum
 <tbody>
 <tr> <td> <th scope=rowgroup> Cats <td> <td>
 <tr> <td> 93 <th scope=row> Legs <td> 3.5 <td> 4
 <tr> <td> 10 <th scope=row> Tails <td> 1 <td> 1
 </tbody>
 <tbody>
 <tr> <td> <th scope=rowgroup> English speakers <td> <td>
 <tr> <td> 32 <th scope=row> Legs <td> 2.67 <td> 4
 <tr> <td> 35 <th scope=row> Tails <td> 0.33 <td> 1
 </tbody>
</table>

HTML also supports a ‘headers’ attribute for indicating the header cell or cells that apply to the current cell.

7.8.2. Tagged PDF and PDF/UA

In Tagged PDF, ‘TH’ structure elements may have a ‘Scope’ attribute, and both ‘TH’ and ‘TD’ structure elements
may have a ‘Headers’ attribute. PDF/UA requires some features in a conforming PDF/UA le that are only optional
in ordinary PDF. This includes ‘Headers’ attributes and, where ‘Headers’ attributes are not clear enough, also ‘Scope’
attributes.

The good news about accessible table markup is that any XML vocabulary that supports (X)HTML-compatible table
markup supports ‘scope’ and ‘headers’ attributes. For example, ‘scope’ and ‘headers’ are in both JATS and DocBook as
side-efects of their supporting HTML tables.

The not-so-good news about accessible table markup is that it requires human efort to properly markup the relationships
between table cells, especially for convoluted tables. In practice, the attributes are poorly understood and are ofen

144

Icons, etc.

omitted. For example, the JATS 1.2 tag library currently omits ‘scope’ and ‘headers’ from its ‘Accessibility’ page, notes
that ‘scope’ (though not ‘headers’) has not been widely supported, and inaccurately states that ‘headers’ points to rows
and columns when it actually points to individual header cells.

7.9. Icons, etc.

7.9.1. Tagged PDF and PDF/UA

Use ‘Artifact’ for icons, etc., that do not represent meaningful content. Artifacts are “graphics objects that are not part
of the author’s original content but rather are generated by the conforming writer in the course of pagination, layout,
or other strictly mechanical processes.”[]

Note
NOTE: Artifacts may also be used to describe areas of the document where the author uses a graphical
background, with the goal of enhancing the visual experience. In such a case, the background is not required
for understanding the content. [PDF2.0]

Use ‘NonStruct’ for any additional FOs that are necessary only to generate the correct visual appearance of a note, etc.
A ‘NonStruct’ Structural Element is not interpreted or exported to other document formats but its descendants are
processed normally.

7.10. Mathematics

7.10.1. HTML

HTML 5 supports MathML, but MathJax [MATHJAX] is an increasingly popular JavaScript library for displaying
mathematics as a graphic. HTML 5 does not have a standard way to indicate that a graphic represents mathematics.
MathJax will, for example, include role="math" in generated SVG but in mathematics that is output as HTML markup.

7.10.2. Tagged PDF

PDF 1.7 denes both ‘Figure’ and ‘Formula’ Structure Element types for illustrations (as well as ‘Formula’ for interactive
forms).

AH Formula supports MathML 3, and it automatically tags an fo:external-graphic or fo:instream-
foreign-object that contais MathML as ‘Formula’ and tags every other fo:external-graphic or
fo:instream-foreign-object as ‘Figure’. It is not known what other formatters generate for MathML.

If you have to use a graphic, and not use MathML, to represent mathematics, then use ‘Formula’ to identify the graphic
as a formula. You should also use axf:alttext (or equivalents) to provide alternate text for the image.

7.11. Citation

7.11.1. HTML

HTML 5 provides the cite element for denoting the title of a work. The blockquote and q elements both have a
cite that is a link to the source of the quotation.

7.11.2. Tagged PDF

Use ‘Reference’ for a citation to content that is elsewhere in the document.

7.12. Block quotation

7.12.1. HTML

HTML 5 provides the blockquote and q element.

7.12.2. Tagged PDF

Use ‘BlockQuote’ to tag a block quotation. While a block quotation typically has a diferent appearance to the
surrounding text, the visual diferences may not be apparent to a person using Assistive Technologies.

145

Inline quotation

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam bibendum tincidunt pharetra.
Aenean ultricies molestie ante, sit amet ultricies nunc mollis id. Integer ut porttitor felis, vel
tincidunt velit. Duis volutpat, quam quis aliquet tristique, nulla dui malesuada velit, et consectetur
tellus ipsum et arcu.

7.13. Inline quotation
Use ‘Quote’ to tag a quotation, such as ““Lorem ipsum dolor sit amet””.

7.14. Inline code

Use ‘Code’ to tag a fragment of computer program text, such as “axf:pdftag="Code"”.

7.15. Bibliography
There is no Structure Element for a bibliography. However, use ‘BibEntry’ for an entry in a bibliography. The ‘BibEntry’
may contain a ‘Lbl’ Structure Element, but there are no Structure Element types for the parts of a bibliography entry,
such as author, publisher, publication date, and so on.

8. Conclusion
Accessibility does matter. There are myriad details that can mastered. Sofware can try to “do the right thing” when
processing or formatting your data, but it is better, and it will yield a better result, if the efort is made to include
accessibility information in your source XML.

Bibliography
[Ang] Trish Ang: How to Fail at Accessibility, 22 February 2019, Slack. https://web.archive.org/web/20190426183254/

https://slack.engineering/how-to-fail-at-accessibility-99bdf3504f19

[FOP] Apache™ FOP: Accessibility The Apache Sofware Foundation, https://web.archive.org/web/20190522213553/
https://xmlgraphics.apache.org/fop/2.3/accessibility.html

[GIGO] GIGO in The Jargon File, Yash Tulsyan, https://web.archive.org/web/20130827121341/http://cosman246.com/
jargon.html#GIGO

[IDIOMS] Common idioms without dedicated elements in HTML 5.3, Editor’s Draf, 18 October 2018,
W3C, https://web.archive.org/web/20181124235038/http://w3c.github.io/html/common-idioms-without-
dedicated-elements.html

[JATS] Journal Publishing Tag Library NISO JATS Version 1.2 (ANSI/NISO Z39.96-2019), May 2019, National Center
for Biotechnology Information (NCBI), National Library of Medicine (NLM), https://web.archive.org/
web/20190528113513/https://jats.nlm.nih.gov/publishing/tag-library/1.2/index.html

[MATHJAX] MathJax, May 2019, MathJax Consortium, https://web.archive.org/web/20190527040208/https://
www.mathjax.org/

[Matterhorn] Matterhorn Protocol, PDF Association, https://www.pdfa.org/publication/the-matterhorn-
protocol-1-02

[PDF1.7] ISO 32000-1:2008, Document management — Portable document format — Part 1: PDF 1.7

[PDF2.0] ISO 32000-2:2017, Document management — Portable document format — Part 2: PDF 2.0

[Perera] Chandi Perera: Accessible Publishing: What is it and how do we get there?, 22 March 2018,
Type. https://web.archive.org/web/20190527111115/https://www.type.com/type-user-conference-2018/
presentations-2018/what-is-accessible-publishing/

[Rosenblum] Bruce Resonblum: @scope and @headers, 9 April 2019, Inera. https://web.archive.org/
web/20190527120216/https://www.biglist.com/lists/lists.mulberrytech.com/jats-list/archives/201904/
msg00004.html

[TaggedPDF] Taed PDF in PDF Output, Antenna House, Inc., https://web.archive.org/web/20190527124525/
https://www.antennahouse.com/product/ahf66/ahf-pdf.html

146

https://web.archive.org/web/20190426183254/https://slack.engineering/how-to-fail-at-accessibility-99bdf3504f19
https://web.archive.org/web/20190426183254/https://slack.engineering/how-to-fail-at-accessibility-99bdf3504f19
https://web.archive.org/web/20190522213553/https://xmlgraphics.apache.org/fop/2.3/accessibility.html
https://web.archive.org/web/20190522213553/https://xmlgraphics.apache.org/fop/2.3/accessibility.html
https://web.archive.org/web/20130827121341/http://cosman246.com/jargon.html#GIGO
https://web.archive.org/web/20130827121341/http://cosman246.com/jargon.html#GIGO
https://web.archive.org/web/20181124235038/http://w3c.github.io/html/common-idioms-without-dedicated-elements.html
https://web.archive.org/web/20181124235038/http://w3c.github.io/html/common-idioms-without-dedicated-elements.html
https://web.archive.org/web/20190528113513/https://jats.nlm.nih.gov/publishing/tag-library/1.2/index.html
https://web.archive.org/web/20190528113513/https://jats.nlm.nih.gov/publishing/tag-library/1.2/index.html
https://web.archive.org/web/20190527040208/https://www.mathjax.org/
https://web.archive.org/web/20190527040208/https://www.mathjax.org/
https://www.pdfa.org/publication/the-matterhorn-protocol-1-02
https://www.pdfa.org/publication/the-matterhorn-protocol-1-02
https://web.archive.org/web/20190527111115/https://www.typefi.com/typefi-user-conference-2018/presentations-2018/what-is-accessible-publishing/
https://web.archive.org/web/20190527111115/https://www.typefi.com/typefi-user-conference-2018/presentations-2018/what-is-accessible-publishing/
https://web.archive.org/web/20190527120216/https://www.biglist.com/lists/lists.mulberrytech.com/jats-list/archives/201904/msg00004.html
https://web.archive.org/web/20190527120216/https://www.biglist.com/lists/lists.mulberrytech.com/jats-list/archives/201904/msg00004.html
https://web.archive.org/web/20190527120216/https://www.biglist.com/lists/lists.mulberrytech.com/jats-list/archives/201904/msg00004.html
https://web.archive.org/web/20190527124525/https://www.antennahouse.com/product/ahf66/ahf-pdf.html
https://web.archive.org/web/20190527124525/https://www.antennahouse.com/product/ahf66/ahf-pdf.html

Conclusion

[TH] The th element in HTML 5.3, Editors Draf, https://web.archive.org/web/20181020164617/https://w3c.github.io/
html/tabular-data.html#the-th-element

[WAIARIA] Accessible Rich Internet Applications (WAI-ARIA) 1.1, 14 December 2017, W3C https://www.w3.org/TR/
wai-aria-1.1/

[WAIARIASUITE] WAI-ARIA Overview, 15 January 2016, W3C https://web.archive.org/web/20190527024541/http://
www.w3.org/WAI/standards-guidelines/aria/#wai-aria-1_1

[WCAG2.1] Web Content Accessibility Guidelines (WCAG) 2.1, 5 June 2018, W3C https://www.w3.org/TR/WCAG21/

[XEP] XEP User Guide, RenderX https://web.archive.org/web/20181225121734/http://www.renderx.com/
reference.html

147

https://web.archive.org/web/20181020164617/https://w3c.github.io/html/tabular-data.html#the-th-element
https://web.archive.org/web/20181020164617/https://w3c.github.io/html/tabular-data.html#the-th-element
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/
https://web.archive.org/web/20190527024541/http://www.w3.org/WAI/standards-guidelines/aria/#wai-aria-1_1
https://web.archive.org/web/20190527024541/http://www.w3.org/WAI/standards-guidelines/aria/#wai-aria-1_1
https://www.w3.org/TR/WCAG21/
https://web.archive.org/web/20181225121734/http://www.renderx.com/reference.html
https://web.archive.org/web/20181225121734/http://www.renderx.com/reference.html

Scrap the App, Keep the Data
Barnabas Davoti

Abstract

Whether by reacting swifly to shifing market conditions and disruptive technologies or by growing
through mergers and acquisitions, the ability to adapt is critical to success in the digital age.

As business processes and workows evolve, new technologies and systems are constantly introduced to
support them. Over time, IT estates become fragmented, and the number of legacy systems increases year
by year. Valuable data ends up in isolated silos, only accessible via otherwise unnecessary applications that
are expensive to maintain and license or are approaching the end of life.

This paper suggests a generic approach to transform arbitrary relational data into aggregated, hierarchical
form and build a thin application to provide read access to end users.

In my presentation, I would like to point out why the relational model falls short when it comes to data
aggregation.

XML can easily model both relational and hierarchical data. It's an excellent choice for data re-modeling
and also for building a thin, data access application.

The approach is based on experience from multiple projects.

XML "bricks" used in the solution:

• processing pipeline conguration as XML (Apache Ant)

• XSLT

• XQuery

• XML database

149

Business issue

1. Business issue
Quite ofen applications are built to be the only gate to its data. Business requirements change all the time, and when the
app cannot adapt to a new workow, or for other reasons becomes obsolete, it's a bottleneck.

Read-only access to the data is still essential for the business, but they cannot justify keeping, maintaining the app.

A possible solution is to replace the complex data-creator app with a simple, thin, data-access app.

The approach I'm sketching here is based on experience from multiple projects. Also, some projects were so massive that
we had to work with vastly diverse data. These circumstances pushed us to think generic.

Let me explain this through example use cases.

1.1. Data archiving and application decommissioning

It is the most common use case. For example, a company changes the nancial sofware because of an acquisition.
According to the regulations, they still have to keep its data for a few years.

It's historical data that won't change anymore, however, occasionally it has to be accessible to end users as a reference,
also for auditors.

For this use case, the natural choice for backend and user interface is an archiving solution. It usually provides a wizard
to congure a search application GUI and implements the archive administration workow (user roles, retention policy,
etc).

However, the archiving system requires data packages with aggregated records, which is a challenge.

1.2. Freeing up licenses

A corporation pays for expensive PLM (product lifecycle management) sofware licenses for hundreds of users. However,
only a handful of users change any product data in the system; the rest use it as a read-only reference.

The company decides to keep only a few licenses and migrate the data nightly into a database which gives read-only access.
The new, thin app could also provide a more easy to use, intuitive GUI for the less demanding user.

1.3. Merging data silos

In this scenario, multiple applications from diferent vendors are used in one company workow. The applications are
not integrated, and their data is isolated, only accessible by a single application.

From the user's perspective, the data across these databases should be connected. Switching between these apps all the
time makes the work inecient, and is a source of frustration for the users.

If there are distinct user roles for data creation and data access, it could be highly benecial for the data access user to see
all the data related, harmonized, and accessible via a single GUI.

Finding the right connection points between the silos can be challenging, but if there are some permanent global
identiers, which are not vendor/system specic, then those can be used to make the connections, aggregate the data
across the isolated silos.

2. Technical angle
Our ultimate goal is to provide access to the data via a thin app, as simple as possible. With other words: as cheap as possible
to implement, or perhaps even generate it via a wizard, no coding needed.

When a user wants to access information via a traditional application with a relational database backend, it does two
things in real time:

1. Filters records

2. Aggregates data

The data always have to be aggregated for human consumption. The only question is when we do this:

150

Relational data

1. In real time - when the user queries the data, OR

2. In advance - so we store the data aggregated

Aggregated data is usually redundant, and a data creator application can't aford this. The relational data model is ecient
because it does not store data redundantly. However, on-demand data aggregation can be very complex and resource-
intensive.

Can we persist the data in an aggregated form, so the application can be simplied and only needs to deal with record
ltering? The relational model falls short on this. It can do aggregation partly, but not entirely. The hierarchical model
is a better choice.

2.1. Relational data

Let's look into this via an example. We want to build a thin app which gives access to travel reports. Our aggregated data
record - what the thin app's search interface will lter on - is a report, which has a header (travel date, reason, employee
info, etc.) and a list of transactions (cost items).

The following simple tables hold data about a travel report.

Table 1. Travel table - holds one record per trip

travel id employee id date reason
t1 e1 2019-05-15 Customer meeting in Oslo

Table 2. Employee table - one row per employee

employee id rst name second name
e1 Ola Nordmann

Table 3. Transaction table - one row describes one transaction

transaction id travel id item name cost currency
c1 t1 bus ticket 100 NOK
c2 t1 accommodation 1000 NOK

Can we make an aggregate table where a single record holds the whole report? Only partly.

Table 4. Aggregate table

travel id empl.id rst name second
name

date reason trans id item name cost currency

t1 e1 Ola Nordmann 2019-05-15 Customer
meeting in
Oslo

c1 bus ticket 100 NOK

t1 e1 Ola Nordmann 2019-05-15 Customer
meeting in
Oslo

c2 accomodation1000 NOK

The aggregate table is highly redundant; still, it does not let us add all report data into a single record. Any application
that uses this as a source will have to do further aggregation beyond record ltering.

2.2. Hierarchical data

Example 1. Aggregated record as a hierarchy:

• travel id=t1

• date: 2019-05-15

• reason: Customer meeting in Oslo

• employee name: Ola Nordmann

151

Diferent paths to consider

• transactions

• bus ticket - 100 NOK

• accommodation - 1000 NOK

Example 2. Serialized as XML:

<travel id="t1">
 <date>2019-05-15</date>
 <reason>Customer meeting in Oslo</reason>
 <employee id="e1">
 <first-name>Ola</first-name>
 <second-name>Nordmann</second-name>
 </employee>
 <transactions>
 <transaction id="c1">
 <item-name>bus ticket</item-name>
 <cost currency="NOK">100</cost>
 </transaction>
 <transaction id="c2">
 <item-name>accommodation</item-name>
 <cost currency="NOK">1000</cost>
 </transaction>
 </transactions>
</travel>

A hierarchical (XML) database can store records like this, and a thin app then should only lter the records relevant to
the user and render it.

3. Diferent paths to consider
Depending on data complexity and the availability of the diferent options, we need to choose the best path from the
list below.

3.1. Use a proprietary connector
This is the fastest and safest way. For example, SAP has a connector for the archiving sofware what we used, but it only
covered 10% of all the scenarios in our projects.

3.2. Use the app's export/import functionality
Use the data creator app's high-level export/report functionality - one last time if the application will be decommissioned
- to get all the data out aggregated. It's usually a reliable way, assuming it's a mature product.

Then we get

1. Aggregated and structured data

Likely we need to transform this further to be able present this to the user, but it's already aggregated, so it's easy.

2. Aggregated and unstructured data

The report tool could produce PDFs, which is human-readable, but searchability is terrible. We need at least some
metadata on top of the documents.

3.3. Export the data from the app's relational database and aggregate it into hierarchical
XML records

Timing - The archiving scenario: at the point of time of an app decommissioning, we could likely still nd people in the
company who know the data. Maybe that knowledge will disappear later on, so doing the aggregation as early as possible
is an advantage.

152

Export the data from the app's relational database, serialize and store it as
relational XML records

Complexity - It's a low-level approach, so a reasonable level of understanding the database schema is necessary. It depends
on the application, of course. Sometimes it's also possible to work with "aregation tables", which at least partly aggregates
the data in the relational database, which makes our job easier.

Example 3. Travel reports:

In one project, we had to aggregate and archive travel records - similar to the example I used earlier in this paper. It has
a header (date, employee...) and transaction items in the body.

It's quite simple on the database schema level:

1. Main travel table - one record per trip.

2. Transaction table - one record per transaction.

3. Attachment table - one record with the attachment metadata and a column with content, for ex. PDF, stored as BLOB.

4. Approx. a dozen other tables were "register tables" . For example, based on the employee ID we could look up the
employee's name from another table.

All in all, we used about 15 tables, and aggregated the records with XQuery that was not so complicated, less than 100
lines and the same patterns were repeating. More about this later.

3.4. Export the data from the app's relational database, serialize and store it as relational
XML records

In this scenario, we skip the aggregation step. We serialize the relational tables "as-is" as XML during the export process
without remodeling the data.

Maybe, in theory, this scenario does not make too much sense, but is quite ofen applied in case of a data archive. Simply
because the archive application provides the thin app out of the box, and also the data management workow.

Then for fetching the relevant info, we have to do two things on demand:

1. lter the records

2. aggregate the data

So we need to write almost the same aggregator XQuery what we use in the previous scenario, but this is run on-demand
by the end-user in real-time and not in advance as part of the data migration.

Pros:

• more exible than the pre-aggregated

Cons:

• could lead to bad performance

• more complex application

• the relational model know-how might disappear from the corporation in the meantime

3.5. Data virtualization

With a generic data virtualization tool, it's also possible to query a relational database via XQuery and build aggregated,
hierarchical XML directly. It can provide a reliable platform and decrease the complexity of the data aggregation. At the
time we worked on these projects, I was not aware of this option.

4. Implementation
In this paper, we'll focus on exporting the data from the app's relational database and aggregating it into hierarchical
XML records.

153

Execution framework

Our data pipeline:

• source: arbitrary relational database

• target: XML database with aggregated, hierarchical records

We could use another hierarchical format, like JSON, but the XML platform is mature and gives us all that we need:
serialization format, schema-, transformation- and query language, and also a native database for persistence. (I might
be partial.)

The suggested solution does use some lines of Java code, but it's kept to the minimum and prefers the XML technology
stack.

4.1. Execution framework
The data pipeline is based on Apache Ant (open source). Its main conguration is XML-based.

It might count deprecated as a build tool, but it still shines as a process execution framework with rich standard features,
like:

1. Process execution (command line, Java, etc.)

2. File operations

3. XML operations (XSLT execution, schema validation, etc)

Beyond the standard features, also 3rd party tools integrate with Apache Ant, like:

• DBUnit, the tool we used to export data from relational databases

• An archiving system we used during our projects

4.2. Execution steps

4.2.1. Export

The export process fetches metadata and data from a relational database and persists it as XML les.

It does the following:

1. Extracts database metadata information (table- and columns names, types, etc.) using Java code (JDBC) and serializes
it as XML.

2. Uses this metadata XML as an input and creates an Ant export conguration for DBUnit. Code: XSLT.

3. Runs DBUnit to export the data and serializes it as XML (relational model), since - as mentioned earlier - DBUnit
has Apache Ant integration. Code: XML.

DBUnit is an open source tool to export and import database data to and from XML datasets. It's database vendor
agnostic, has a connector for most widely used databases. It has a streaming mode to deal with big data. In our
conguration, we exported each table into a single XML le. The largest XML output le so far was 43 GB.

Example 4. XML data using the relational model - from DBUnit:

<table name="employee">
 <column>employee-id</column>
 <column>first-name</column>
 <column>second-name</column>
 <row>
 <value>e1</value>
 <value>Ola</value>
 <value>Nordmann</value>
 </row>
 <row>...</row>

154

Execution steps

</table>

4.2.2. Transformation

4.2.2.1. XML serialization

Serialization of any data into XML has its challenges. First of all, DBUnit has to gure out the type of the data eld. Is it:

• text

• numeric

• binary

If it's binary, then it gets embedded into XML as a Base64 encoded string. All the 64 characters this encoding uses are
valid XML characters.

Serializing numeric values is easy. However, text data can contain characters which are invalid in XML. For example, some
legacy applications used "control characters" - below decimal 32 (space char). Most of those are invalid in XML 1.0. XML
1.1 expands the set of allowed characters.

Of course, we could work around this by Base64 encoding all textual data, but this would result in cumbersome processes
when we query the data.

In projects, we did stick with XML 1.0, and when we faced illegal XML characters in the DBUnit output, mostly we
could simply remove them safely with a low level (text) process.

4.2.2.2. Data types

Getting the data types converted correctly is a challenging part of the process. SQL implementations bring vendor-specic
data types. All of them have to be mapped accurately to XML schema data types. This is done via conguration.

4.2.2.3. Row customizer

In our framework, we tried to implement the process to be as generic as possible, but we also added customization options.

Our row customizer is a custom XQuery that gets a single row as input and can lter or modify it.

4.2.2.4. Format conversion

The serialization format DBUnit uses is not the best when we want to query the data set. It's worth to write generic code
to turn XML with column names as text, into XML with column names used as element names.

Example 5. XML data using the relational model - better semantics:

<employee>
 <row>
 <employee-id>e1</employee-id>
 <first-name>Ola</first-name>
 <second-name>Nordmann</second-name>
 </row>
</employee>

4.2.3. Aggregation

The most challenging step in this data ow is to re-model the relational data into aggregated, hierarchical data. A relational
database table becomes one (or more) XML document during the data export, which can be quite large, ofen several
gigabytes. During the aggregation, we need to "join" these large "table documents".

We can use SAX, StAX or XSLT streaming mode to process large les, but the parallel processing of several large
documents is problematic. Here comes the power of an XML database and XQuery. Conguring proper indexes is a
must.

As I have described before, the complexity of the XQuery is not too bad, since we tend to reuse the same patterns multiple
times.

155

Conclusion

This XQuery is specic to the database schema we work with, and cannot be written generically. This query script is the
only part of the data pipeline which is custom made for each relational database schema; the other operations are generic
and work with any database.

Most importantly, we need to have a decent knowledge of the relational database schema, and also the end user
requirements about how this data will be searched and used.

Example 6. Aggregated records in hierarchical XML:

<travels>
 <travel id="t1">
 <date>2019-05-15</date>
 <reason>Customer meeting in Oslo</reason>
 <employee id="e1">
 <first-name>Ola</first-name>
 <second-name>Nordmann</second-name>
 </employee>
 <transactions>
 <transaction id="c1">
 <item-name>bus ticket</item-name>
 <cost currency="NOK">100</cost>
 </transaction>
 <transaction id="c2">
 <item-name>accommodation</item-name>
 <cost currency="NOK">1000</cost>
 </transaction>
 </transactions>
 </travel>
 <travel>...</travel>
 ...
</travels>

It's also possible that the data from one database is not aggregated into a single list of records, but into multiple lists of
records using diferent XML schemas.

5. Conclusion
We had great focus to make this solution as generic as possible to

1. optimize productivity

2. provide good control on the process

The rst statement is likely trivial, while the second requires a bit more consideration. It's quite challenging to test
complex data migration processes. We can count records, but if we want to compare data, that's a demanding task. The
easiest way to ensure quality is to build a robust, generic framework, which has only a few "moving parts", code which
is database schema specic.

When the data aggregation is done, we either use an application platform or archiving system to create a thin app via an
app wizard, or we build it on top of the (XML) database using XQuery.

If we feed an archiving system with aggregated, hierarchical records, it can provide the complete end-user application
via simple conguration: the end user GUI (search forms), the result rendering, and even the record ltering query (for
example XQuery) can be auto-generated.

156

Documenting XML Structures
Erik Siegel
May 2019

157

Introduction

1. Introduction
We, as XML geeks, all have to do with understanding XML structures we didn't design ourselves. It might be a
programming language written as XML, a library conguration le we need to change or data that needs lling. Whatever
it is, we need to comprehend the format: the elements, the parent-child relations and the attributes. Most important of
course is the meaning of it: how can we use this XML structure to bridge the gap between our intend and the workings
of the sofware it's going to be processed by.

Most of us will probably have been on the other side of this problem: We designed a nify XML structure and needed
to explain this in such a way that others can and will use it (and, as an important side-efect, are mighty impressed by
our elegant, intelligent and beautiful design). How to explain an XML structure so users can make the most of it? More
ofen than not this also has marketing value: A well constructed and intelligible explanation might convince people to
use your product/library/programming language.

Neither side is easy. We probably all have experienced the frustration of wrestling with a half understood and sloppily
documented XML format as input for some piece of sofware that stubbornly refused to do what we wanted it to do. Or,
on the other side, the sinking feeling of having to document this nice but complex XML structure, not really knowing
how to do this, but realizing it will take a lot of time.

This paper will look at the problem of documenting XML structures from various angles: consumer, producer, the
structures themselves, supporting sofware, etc. It will then focus on the production side. Spoiler alert: There are no quick
and easy solutions and at the end there is, unfortunately, no GitHub repository containing an auto-XML-structure-
document-writer-application… sorry. However, with a little thinking upfront and a bit of automation, the task of
documenting XML structures can become more manageable and maybe, for some, even enjoyable.

1.1. About the author and his documenting experience

I'm an XML specialist, doing things like consulting, designing and programming, strictly XML technology only.
However, strangely enough, I also like documenting, writing and explaining things to people. Some examples:

• I have given various XML, XSLT and other related courses to very diferent audiences.

• Together with Adam Retter I wrote a book about eXist-db, which was published by O'Reilly in 2014.

• Some time ago I re-factored the eXist documentation pages (and partly the accompanying application).

• I'm currently working on a book about XProc 3.0, to be published when we've nished the standard.

• Of course, like probably for everyone, documenting stuf is something I sometimes do as part of the project I'm
working on.

In all this, documenting XML structures is unavoidable. So I've tried out diferent ways and formats and tried to
understand why some things work and others don't. This culminated into this (admittedly not very academic but
hopefully enlightening) paper.

2. Consumption: Understanding XML structures
If we in our line of work encounter an XML structure we don't know yet, nding some description is usually just a web-
search away. Google, Stackoverow and the likes will ofen come up with some example, solution or description to help
us. This is what I call "cookbook" level understanding: You don't really know what you're doing but you found a recipe
and, hey, it works (or not).

But what if you really need to understand the format and its implications? For instance because it's a programming
language you need to master. Or the application it serves is important to you. You start digging and hopefully nd
some kind of in-depth explanation of the structure. Do this more than once and you'll nd there is no uniform way of
documenting such a thing. Let's have a look at a few:

XSLT A lot of people in the XML community know Michael Kay's XSLT book (Michael Kay;
XSLT 2.0 and XPath 2.0 Programmer's Reference, 4th edition; Wiley Publishing). Since
an XSLT program is an XML structure, the book needs to explain this. Here's an excerpt
from the explanation of the <xsl:copy-of>:

158

Consumption: Understanding XML structures

Figure 1. An excerpt from the documentation of XSLT

All XML structure descriptions look this way, with as most important parts: short
introduction, a standardized formatted impression of what it looks like, a table explaining
the attributes and a description of its contents.

Maven POM The documentation of Maven POM (Project Object Model) les can be found on the
Apache Maven POM site (https://maven.apache.org/pom.html). Here's an example:

Figure 2. An excerpt from the documentation of Maven POM les

This follows a diferent approach: Short introduction, example XML fragment,
explanatory text with a lot of bullets.

Ant Another example we're probably all familiar with is Ant. Ant's documentation can be
found on the Apache Ant site (https://ant.apache.org/manual/). Building blocks of Ant
are tasks. Here's an example of a task description:

159

https://maven.apache.org/pom.html
https://ant.apache.org/manual/

Consumption: Understanding XML structures

Figure 3. An excerpt from the documentation of Ant

The documentation follows a consistent pattern: Description, parameters (which are
attributes), description of nested elements (for brevity reasons not shown) and examples.

HL7 CDA Here's an example of something only a few will be familiar with: HL7 CDA (health Level 7,
Clinical Document Architecture), a standard for the exchange of healthcare information.
In a book that tries to explain this and more (Principles of Health Interoperability,
SNOMED CT, HL7 and FHIR; Tim Benson, Grahame Grieve; Springer-Verlag), I found
the following way of explaining the CDA XML structure:

Figure 4. An excerpt from the documentation of HL7 CDA

They use a tree diagram to outline the structure followed by a short explanation followed
by (badly formatted…) examples of XML structures and more text to explain these.

eXist-db conf.xml A last example comes from the documentation of eXist-db's conf.xml le. This is the
main conguration le for the database.

160

Production: Creating XML Structure documentation

Figure 5. An excerpt from the documentation of eXist-db's conf.xml

This le has no separate documentation page or document. Instead everything is
documented using XML comments inside the le itself.

These are just a few examples and they illustrate there are very diferent of documentation formats out there. Now
everybody probably has his/her preferences and not every format needs the same kind or level of documentation, so can
we say something in general about it? Let's try:

• A major factor in the comprehensibility of the descriptions is consistency. All parts of the structures must be explained
in the same way, using the same (sub)sections and lay-out. This becomes more and more important when you use
the XML structure on a regular basis. Your eyes and brain get used to the format and can quickly and easily nd the
things you want to know.

• The structure description must be correct and complete. No unmentioned surprise attributes for special occasions,
no missing discrete value lists, etc.

• On the other hand: Constructions or values that will rarely be used should be recognizable as such. You don't want
to spend time understanding this weird attribute that seems important, nding out it will only rarely be used, much
later…

• The format should be easy to interpret. Meaning should almost pop-up from the page by just looking at it. This means
judicious use of all the lay-out tools we have: sections, tables, colors, fonts, whatever. An attractive look is almost a
necessity (you don't get a second chance for a st impression).

3. Production: Creating XML Structure documentation
Let's step to the other side and imagine we have to document some non-trivial XML structure. If there are no previously
set rules and guidelines, we're faced with some tough choices: how deep or shallow should the documentation be, what
format are we're going to use, how are we going to produce and maintain it?

These questions need in answer, but maybe we should start with acknowledging something important: for most people
it's not a pleasant prospect at all!. You're deep-down in some code that will be used by others, you created some clever XML
format, and suddenly you realize that, for people to be able to use your skilfully designed contraption, this format, that
grew a little out of hand, needs documentation. Argh. A depressive sinking feeling overwhelms you… But why is that?

• Creating documentation means stepping out of your "knowledge bubble", which is a very, very hard thing to do. You
have to step back and try to imagine you're new to all this. What does a fresh user of your sofware/format needs to
know? What is important background, overview and detail information?

161

Schemas and documentation

• Creating documentation is a lot of work.

• You're (probably) a developer, not a technical writer, and documenting is not your favourite cup of tea.

• Even when you just start writing, you'll soon realize you need a format, a consistent way of describing things. Not only
for the reader, but also for yourself. Documenting structures by following some format is really much easier than just
typing along and making things up on the y. But which one? Sigh…

•

• Once you have it, you're obliged to maintain it. This means that changes in the sofware now also require you to
revisit the documentation. This can lead to all the phenomena we know from maintaining sofware: from just a few
keystrokes to extensive refactor and overhaul operations.

• Sometimes, while programming, you get carried away and in the end your XML structure turns out to be so
complicated, documenting it is hardly doable.

So how to approach this? Before we go in to this, let's make a little side step and look at something that might be going
through your mind already: Of course the XML structure in question has a schema of some sort. Can't we use that for
(generating) documentation?

3.1. Schemas and documentation

Creating a schema of some sort (e.g. XML Schema or RELAX NG, maybe with additional Schematron rules) for your
XML structure is always a good idea. It helps users to ascertain they created at least syntactically correct XML. It can be
used in IDEs like oXygen to get help in creating the thing. But is it also useable for end-user documentation?

There are generators out there that can turn a schema into documentation. Here is an example of some something
generated by oXygen:

162

Schemas and documentation

Figure 6. An example of (a part of) generated schema documentation by oXygen

Like sofware has classes, methods and type denitions, schemas have constructs like groups, types, extensions, etc. This
is all there for the schema developer and maintainer: keep things consistent, don't dene constructs more than once, add
internal documentation by using meaningful names and make things easier to change. So a simple element might be
constructed from an extended type, adding attribute groups, re-dening constructs made earlier, etc.

All this is very important and necessary, but not for the end-user. When you look for instance at the diagram oXygen
generates, I think you can see the problem: way too much detail. As an end-user of the XML format you're not interested
in how the structure is dened in the schema. You simply want to know the attributes and child elements, what they
mean and how and when to use them.

To be fair, the oXygen documentation generator can be tuned in excruciating detail and maybe there is a setting I haven't
found yet that will generate what we need. But there are two other problems lurking in the wings:

• Are the annotations you write in the schema for the end-user or for the schema maintainer? You probably need both.
Maybe using nify tricks you can keep them apart, but can the documentation generator handle this? You'll also have
to be very consistent and careful in creating them.

• XML structure documentation more ofen than not needs additional narrative texts in-between things. For instance
when introducing an element, provide an example or add a warning about something. This does not follow from
the formal XML structure, it follows from the ow of the explanation. At this moment there is no way a schema
documentation generator can cater for this.

This all is a fundamental problem: Schema documentation generators document the schema, not necessarily the resulting
format. Lots of unnecessary schema innards show up and obfuscate what an end-user needs to know. You can't add
additional texts. Its a bit like trying to generate Java program end-user documentation using the Javadoc pages…

163

Writing documentation

3.2. Writing documentation

So, OK, The idea that you have to write some documentation has landed and you set yourself to this inevitable task.
Where to begin? Let's see if we can prepare some guidelines.

• If you're smart, you realize upfront that maybe, one day, you'll have to write documentation of some sort for the
structure you're working on. And that means trying try to keep its complexity in check. Especially child constructions
with lots of complicated nested choices, sequences, etc. are very hard to explain in a satisfactory way. KISS rules.

• Please realize you're in a knowledge bubble. You know everything there is to know about the XML structure. Maybe
you consider it trivial. But your reader does not. So, rst and foremost, try to put yourself in the user's mind. What
does he or she need to know to use things efectively? What is important and what are details? What does the reader
not know?

To reach such a state of mind, the easiest you can do is step away from your project for a day or longer. Take it over
the weekend, distract yourself a little. And then plunge in.

• Once you've, at least partially, lef your knowledge bubble, try to get into the one of the reader. Who is he or she? What
background knowledge can we expect? What is your audience?

Since we're talking here about documenting XML structures, I think its safe to assume you're writing for a technical,
knowledgeable audience. So don't overdo it and ramble about the syntax and semantics of XML in general, or what
a schema is, a web-server or other generic concepts. Best to assume this is common knowledge. Writing about it will
only annoy your audience and make them feel belittled.

• An ofen made mistake is to start explaining something without establishing what is for. So you happily set out
describing your structure's root element and all its attributes, but forget to tell the reader why he/she should bother
anyway. Why is this XML structure there? What does it do in general? Where in the processing is it used?

So it's important to start with some narrative. A few paragraphs that explain background, goal, usage and the likes in
broad terms. Maybe even some diagram or owchart?

• Another thing I always like to see before plunging into the details is some example (or more than one) of the structure
we're talking about. What does it look like? How much of it do I already roughly understand? What's the style? It's
like a starter when dining out or the trailer of a lm.

But watch out: deciding on a good example is not easy at all. It must be more than trivial but not overly complicated. It
should not bury the reader in frightening details. It should be geared towards some common use-case, one that many
readers will recognize and understand and that is not too hard to explain. It must be illustrative.

• Before you start explaining the nitty-gritty details of the XML structure, decide on a format. It's not only irritating
for the reader to nd this element explained this way and another one very diferent, it will also make your writer's
task miserable. This is analogues to programming without conventions. Just try to imagine how tiring it would be to
have to come up with some original naming format every time you create a variable, function or class. Much easier to
decide on something and stick to it.

Of course this leads to the question: what is a good, or at least sucient, format? More about this later.

• Since we're all XML-heads here, I don't think I have to explain the diference between markup and its presentation. So
when you're documenting some non-trivial structure, invest time in setting up a tool-chain in which you can describe
structures in a formal way that is subsequently converted into the nice diagrams and tables you want to show your
readers. Don't create them by hand.

This is very important for maintenance reasons. Assume for instance you've decide to make extensive and beautiful tree
diagrams of your XML structures using some manual drawing tool. The result is awesome and the likes start streaming
in. But XML structures, like all sofware, tend to change over time. So you have to redo some of the drawings, which
is a lot of work even for small changes. Nah, not now… The documentation starts lagging behind and probably dies
in beauty one day.

• As strange as it may sound, when things get complicated, don't let slavishly following the format get in the way of
being understandable. There are situations where your diagrams or formal descriptions will become hard to read and
slight deviations from the format you've decided on will improve understandability. Two examples:

• The XProc programming language has a <p:choose> instruction. The (new 3.0) standard depicts it like this:

164

Writing documentation

Figure 7. The <p:choose> in the standard

Look at the construction for the child elements <p:when> and <p:otherwise>. It explains, formal and
correct, that there must be at least a <p:when> or a <p:otherwise>. Let there be no doubt: standard's
documents must be formal and correct, so here it's no problem. But what if you're documenting this? This whole
construction with its parenthesis, +, ? and | marks is not really easy to understand for humans. It looks daunting,
even while its meaning is quite simple.

So when I was writing the section about <p:choose> for the XProc book, I decided to do it a little diferent:

Figure 8. The <p:choose> in the XProc book

Somewhat further down followed by the remark:

• A <p:choose> must contain at least one <p:when> or a <p:otherwise>. In other words: a
<p:choose> without at least a single branch is not allowed.

So a simplied diagram, followed by some additional text explaining the border condition. Not formal, not
technically exactly correct, but easier and quicker to understand.

These kinds of decisions are also driven by the importance of what you're trying to tell. That a <p:choose>
has <p:when> and <p:otherwise> children, yes, that's important. That there's a formal condition on there

165

The target format and how to produce it

being at least one… duh. Who will ever want to write a <p:choose> without one? You loose a little exactness
but you gain a lot of understandability.

• Sometimes possible attribute values are a list of discrete values, like for the visibility attribute in following
example.

Figure 9. An attribute with a discrete value list

That's OK when this list is small, but what if it becomes longer and overows the line width? Since you've decided
on a format where discrete value lists are part of the diagram, you might be tempted to put them all there. However,
that would mess up the layout of the diagram and would forfeit its purpose: a quick, single glance, overview of an
element's structure.

A better solution here would be to list just a few values in the diagram, add an ellipsis (…) to signify this list is
incomplete and list them (in a table) later on in the document.

3.3. The target format and how to produce it
What should be the target format of our documentation. Can we get away with comments in the le? Will it become a
website with linked information? A PDF? Is a wiki page sucient? Or are we writing a book?

• For les where there's only one of, like conguration les, its tempting to add documentation using comments in the
le itself (like the eXist conf.xml example above). However, I don't think that works very well. Files are edited,
and with the editing, sections, including the documenting comments, will disappear or get duplicated. Your nicely
formatted le will soon become a mess. Another reason for not using XML comments is that your layout options are
limited. Maintenance of nicely indented and formatted lists or tables in comments is hard to keep consistent…

• When things are easy and extensive documentation is not really necessary (or there is no time), just use what's at hand.
Write it in Word and output it as PDF or HTML, use HTML directly, a Markdown readme le, a wiki page, etc.

• When things get a little complicated, more than just a day or so of work and non-trivial, invest in a tool-chain that
generates the documentation for you out of some medium-neutral source format. DocBook and DITA are good
candidates, especially since IDEs like oXygen have such a splendid support for them. And once you have a medium-
neutral source, the nal format does not matter much anymore.

In designing such a tool-chain, begin with the narrative! So start by being able to create "just" text (like a DocBook or
DITA structure) and pull in generated diagrams, tables an the likes from there. Not the other way around.

3.4. XML element documentation
What is a good (or at least sucient) documentation format for our XML structures? We've already talked about the
importance of introductory text and examples so let's not talk about that again. Let's look at how to document the basic
building blocks of XML: elements. I'll list some requirements rst an then talk about what I made of them.

• The structure must be clear in a single glance, with as little ambiguity as possible.

• It must contain all the necessary detailed information, quick and easy to nd.

• It must be attractive to look at. Of course attractiveness is subjective but probably everybody knows examples of pages
with a really bad layout. Avoid this.

• It must have ample space (and locations) for additional narrative texts.

• It should not deviate too much from what the reader is expecting and used to.

166

XML element documentation

• It must be consistent: all elements must be done the same way (so the reader gets used to the format).

When I started out writing the XProc book I thought long and hard about how to do this. What I came up with is the
following:

• For the "clear in a single glance" experience you have to start with some kind of formalized depiction of the XML
element. A common way is the following (this comes from the XProc 3.0 standard):

Figure 10. Example of an XML element documentation diagram

If you look at other documentation formats, you'll see this in several variations. Admittedly, its hard to beat. It make
the element's structure clear in a single glance and people are used to it. So I decided to stick with it, more or less. One
important thing I changed is to put angle brackets around child elements to make it very and unambiguously clear
that these are elements.

Figure 11. My XML element documentation diagram

Regardless of the layout details, starting with something like the above is important. People are used to it and get an
immediate and clear impression what we're talking about.

• Afer this diagram come the details. What do the attributes and child elements mean? How can we make this as clear
and easy to nd as possible?

167

XML element documentation

In my view, nothing beats tables in presenting this kind of information. These tables should be consistent in that
all attributes and child elements must be there. Yes, even when you're documenting this name attribute for the
umpteenth time, it must be there. The reader might not have seen the explanations that came before and expect it to
be there (but nothing of course that stops you from pulling repeated texts from some common source in your tool-
chain…).

Here is an excerpt of the table explaining the attributes of the example <p:with-option> element:

Figure 12. Example of a table explaining attributes

And here is the table explaining the child elements:

Figure 13. Example of a table explaining child elements

As you can see, the texts in the tables are relatively short. When longer or additional explanations are necessary, put
them elsewhere and link to them (or say something like "see below").

• I will not show you, but my tool-chain allows me to add additional narrative texts (almost) everywhere: in-between
the diagram and the tables, in-between the tables, etc. So whenever and where-ever necessary, additional explanations
can be added, exactly where they're needed to have maximum impact on the understandability.

So is this it? No, absolutely not. I regularly catch myself changing this or that little detail (especially when the inspiration
for writing prose is temporarily missing, the equivalent of doodling around…). There are still some things I'm not totally
satised with but unsure on how to proceed or decide. For instance the order of attributes/child elements. Should this
be alphabetical or in order of importance? And if the latter, how do you decide on importance? It's probably something
that is never nished but one thing I do know: it's slowly getting better.

168

An example tool-chain

3.5. An example tool-chain
As an example a short overview of the tool-chain I'm using for creating the XProc book. And guess what: it's written in
XProc, although of course still V1.0.

Figure 14. My tool-chain for the XProc book

1. The tool-chain starts of with DocBook 5 sources, split into les per chapter.

2. The descriptions of the various elements are in separate XML les, using a (self invented and, guilty as charged, badly
documented) XML dialect.

3. Inside the source DocBook there are special instructions (XML elements in a diferent namespace) that trigger the
processing of these XML descriptions

4. A special sub-pipeline converts the XML descriptions into DocBook and takes care of all the formatting, table
building, etc.

5. I don't always want to create things like complex tables directly in DocBook. That's hard to write and maintain. Instead
I write some XML that contains the data and a conversion (either XSLT or XProc) that turns it into DocBook.

6. Like the XML descriptions, this is triggered by special instructions in the DocBook sources.

7. Finally the tool-chain converts the DocBook into XSL-FO and, through FOP, into PDF.

All the components of this tool-chain are in an open-source library on GitHub (https://github.com/eriksiegel/xtpxlib,
in the xdocbook folder). There is a little documentation. If you're interested and need help, drop me a mail and I'll
see what I can do.

4. Conclusions and wrap-up
As a wrap-up, let's try to summarize a few things:

• All this is relevant when you have invented some XML structure that will be used by others and you want to make
sure they'll understand it.

• When you're serious about documenting, invest in a tool-chain that automates at least the generation of element/
attribute documentation.

• Acknowledge you're in a knowledge bubble. Try to distance yourself from what you know before you begin.

• Always add a schema of some sort. But that's not enough.

169

https://github.com/eriksiegel/xtpxlib

Conclusions and wrap-up

• Take the narrative as a starting point and include generated parts into your (hand-crafed) work. Generated
documentation is almost never sucient, satisfactory and/or clear enough.

• Start by taking the reader by the hand in some overview introduction. Provide one or more examples.

• Spend some time making it look nice.

170

XMLPaper: XML-based Conference Paper
Workow

Cristian Talau, Syncro Sof SRL

Abstract

Popular conference management systems are monolithic solutions that are used across many elds and
by very diverse audiences. As a result, these systems have rigid technology choices for paper format: PDF,
TeX or Word which have limitations compared to a structured format such as XML. In addition, they do
not cover all the steps in the paper submission lifecycle such as: collaboration between authors.

We propose a new solution for conference paper submission management that tries to improve the user
experience in several areas: authors tooling setup, collaboration between authors, multi-step review
processes, multi-format proceedings publishing. This paper will present a typical conference paper
submission workow and identify its steps, the stakeholders and the tools and technologies used. We will
then present how our solution improves user experience of each of the stakeholders.

In this solution, the documents are authored in the an XML format, that supports publishing both
as PDF and web portal. The output format is customizable and clearly communicated to authors so
that they can preview how the paper will be published. Authors have a very intuitive user interface to
draf the paper and to collaborate in cases where a paper has multiple authors. Reviewers can choose to
review either the published PDF or directly on the source. In case of multi-round reviews, they can see
the changes made between diferent revisions, thus being able to focus on the last updates.

From a technical point of view, the solution is composed from of-the-shelf Web services with a thin layer
of orchestration. It may to be used together with a regular Conference Management System, replacing
parts of its functionality.

To conclude the paper, we analyze how this solution is similar with other workows related to content
creation in a company, such as creating release notes or datasheets for a product.

171

Introduction

1. Introduction
In this paper I will rst present the lifecycle of a conference paper, the key actors and the document formats used. In
the next section I will present the architecture of XMLPaper. Then I will explain how this solution improves the user
experience for each of the stakeholders.

To conclude the paper I will point out similarities between conference paper submissions management and other content
management workows that usually happen in a company.

2. Conference paper submission workow

2.1. Content creation

A conference paper submission lifecycle starts with the authors collaborating to create the content of the paper. At this
point the may request preliminary reviews from colleagues or other members in their organization.

The most popular format used to submit a paper is TeX for science conferences while Word is the de-facto standard for
humanities conferences.

It is not uncommon for authors to create drafs in other formats and only the nal submission to be written in the format
required by the conference.

2.2. Peer review

Afer the paper is ready it is submitted to the conference committee to be reviewed. The review can be a multi-step process
in which authors iterate on the paper afer a round of reviews.

This review is usually performed on the PDF or Word version of the paper and comments are written in the Conference
Management System and not directly linked to parts of the document. For multi-round reviews have to identify the
changed parts of the paper and to evaluate whether their previous feedback how addressed.

2.3. Publishing

Afer the paper is accepted, an editor needs to put it together with the rest of the accepted papers and edit them to have
a consistent style and format. At the end the proceedings of the conference are published.

Most of the conferences publish only a PDF version of the proceedings which is also used for print in some cases.

To make sure all papers have a consistent format the conference employs either a Word styles library and expect authors
to adhere to those. In other cases the conference publishes a LaTeX .class le to be used by all authors and expect that
the submitted PDF les were generated using that conguration le.

3. XMLPaper architecture

3.1. The source format

XMLPaper uses the DocBook format for the paper across all the stages of its lifecycle.

DocBook has special markup for articles and is rich enough to support embedded objects like images, videos,
mathematical equations, tables, code blocks and so on. However, DocBook is not the only suitable XML vocabulary -
JATS (Journal Article Tag Suite) is also a viable alternative.

Some advantages of using DocBook include:

• The authors can focus on creating the content of the paper and leaving it to conference organizers to dene the layout
and style of the published version of the paper.

• The content can be published to multiple formats, such as PDF, web page and e-book. Having the source available,
one can re-publish it later as new formats become popular, e.g. audio paper.

172

Self-service project template

• Being an open standard format, it is good for archiving purposes. Some academic papers have a longer lifetime that
the company than a particular proprietary format.

• Being widely used in enterprise content creation, there is wide range of tooling available for XML-related tasks such
as editing, collaboration, and publishing.

3.2. Self-service project template
The delivery format of XMLPaper is a self-service project template. This project template does not only contain an outline
of a paper to be lled in, but also conguration les for all the required tools and services so that authors can start working
on the conference paper right away.

In order to create an afordable solution we reused of-the-shelf tools and services and made them work together without
having the author set every up thing. To make it easy to create a portable conguration that works without any sofware
requirements for authors XMLPaper uses mostly cloud services.

XMLPaper allows authors, just by clicking a button, to copy the project template to their Git account and deploy a web-
based dashboard for working on the paper.

XMLPaper Dashboard

The Dashboard contains buttons to perform the following tasks:

• Preview the latest committed version of the paper in PDF format.

• A link that can be used to edit the paper in Oxygen XML Web Author.

The project includes conference-specic editor conguration:

• It validates the paper source "as-you-type" according to the conference-specic constraints expressed as Schematron
rules.

Editor issues a warning that the abstract is too short

• It includes inline actions and hints to help authors create the correct XML structure

173

Self-service project template

Inline hint about how to split the paper in sections. Inline actions to convert a section to subsection and vice versa.

• The change tracking and commenting features help co-authors collaborate. They can also be used to send document
for review before submission.

Comment added by a reviewer suggesting some additional bibliography items

• View the XML source code in the Git repository. Most repository hosting services can be used for collaboration
between co-authors - they ofer version tracking, issue management, and other collaboration features.

In this repository, users can nd an .xpr project le for Oxygen XML Editor which congures the editor to match
the conference requirements similar with the web editor. It also includes a Transformation Scenario that generates a
PDF preview. Using this editor authors can edit and generate a PDF preview of their paper while oine.

• Download the paper in XML format and all supporting resources (xi:included les, images, etc.)

The back-end of the solution is composed of several services as depicted in the diagram below:

XMLPaper back-end services diagram

• The Dashboard is a static web page with hyperlinks to the web interfaces of the other services. It is generated during
the initial setup since the links depend on the location of the Git repository.

• The Git repository stores the source of the paper together with conguration les and build scripts.

• The web-based editor can be opened using a link on the Dashboard. It connects to the Git repository to read the paper
source and to commit it every time the users saves.

• Every time an user commits a le in the Git repository, a git hook triggers a new job on the build server. This job
connects back to the Git repository to pull the entire repository and then performs the following tasks:

• Generates the PDF preview.

174

Steady-state workow

This task involves downloading several tools such as Saxon 6.5, DocBook XSL, XSLT-HL (for syntax highlight in
code-blocks), and Apache FOP. It also involves applying some custom XSLT and conguring the above-mentioned
tools.

Example 1. PDF Generation conguration

java -cp "bin/saxon.jar:bin/docbook/xsl/extensions/xslthl.jar" \
 com.icl.saxon.StyleSheet processed_paper.xml \
 bin/docbook/xsl/fo/docbook_custom.xsl \
 admon.graphics=1 \
 admon.graphics.extension=.png \
 admon.graphics.path=bin/docbook/css/img/ \
 "body.font.family=Times New Roman, Tahoma, Batang, serif" \
 callout.graphics.path=bin/docbook/xsl/images/callouts/ \
 draft.mode="no" \
 fop.extensions=0 \
 fop1.extensions=0 \
 highlight.source=1 \
 highlight.xslthl.config=\
 file://`pwd`/bin/docbook/xsl/hl/xslthl-config.xml \
 "monospace.font.family=monospace, Courier New, Consolas, Arial" \
 paper.type=A4 \
 "title.font.family=Arial, Tahoma, Batang, sans-serif" \
> out/paper.fo

However, conguring the publishing pipeline is the job of the conference organizers. Authors just save in the editor
and then a build starts which in turn uploads the generated PDF to the web server.

• Generates the deliverable archive containing the XML source and all its referenced les, for example images.

• Generates the Dashboard web page. This page is static and does not change over time. However, its links depend
on the URL of the Git repository, so it has to be generated during the rst build.

• Pushes everything on the web hosting service. In the current implementation the web hosting and build server
services are part of the same product.

3.3. Steady-state workow
The steady state workow is simple and it resembles the one used for static-site generators:

1. User saves their changes

2. The editor commits the changes in the Git repository

3. A git hook is called to trigger a job on the build server

4. PDF and other reports are generated

5. Artifacts are uploaded to the Web Server and ready to be used.

3.4. Initial setup
The initial setup is more complicated than duplicating the template project since it needs to link together multiple services
ofered by diferent vendors. For more details about service choices one can consult the web page of the XMLPaper
project: https://github.com/oxygenxml/markupuk-2019-paper.

To make the setup more intuitive XMLPaper uses a setup tool that takes care of connecting various services. This setup
tool is part of the same suite as the build service and web hosting service. To make other services cooperate, the steps
below are performed:

Authorize the setup tool to create a
Git repository

The setup tool uses OAuth to ask the authors for permission to create and
manage a Git repository in their account starting from the project template.

Link the build service to the Git
repository

The setup tool registers a Git hook to trigger the build service whenever a
commit is pushed. It also registers an SSH key so that it can fetch the repository

175

https://github.com/oxygenxml/markupuk-2019-paper

User experience analysis

contents to perform the build. Each build job will have the URL of the Git
repository as an environment variable.

Generate the Dashboard web page
with links to the other services

The build service runs a script found in the project that uses the URL of the Git
repository to create back links to open the source of the paper either directly or
in the web editor.

Authorize the web editor to access the
Git repository

When the web editor is opened for the rst time, it uses OAuth to request the
user's permission to read and commit les in the Git repository when the author
opens or saves the paper in the editor.

Note
Some of the services require the author to create an user account. In our case, the user has to create an account
with a Git repository hosting service and another account for the build service, setup tool, and web hosting
service. The user account creation usually happens as an interstitial step and only if the user does not already
have an account.

In our case, the services are either part of the same bundle like the build service and web hosting service or are connected
using OAuth. Other services use personal access tokens to allow applications access their API. In this case, the user should
be guided to generate one and give it to the setup tool.

4. User experience analysis
Authors Authors get an easy-to-setup environment to work on their paper.

• Inline hints help the create the proper structure.

• The "as-you-type" validation removes the anxiety of submitting a paper that does
not respect the conference constraints.

Also by integrating a reporting service, the validation errors can be centralized and
tracked in case the authors cannot x them right away.

Validation issue presented by a reporting service

• A preview of the document helps authors tune the paper for the paper publishing
format used by the conference. For example, limiting the code-blocks line length
to make sure they do not overow the page for the indent values used when
publishing the proceedings.

• Collaboration is made easy by the Git version system features and the commenting
and change-tracking features of the editor.

Reviewers Reviewers can add comments directly linked to the section that they refer to. Also,
in case of multi-round reviews, it is easy to see a diference between the two versions
of the paper and to check how their comments were addressed.

Conference organizers Having the papers in a structured format and respecting the imposed constraints, it is
easy to publish them in multiple formats. Also, since authors have the opportunity to
preview their paper published with the ocial formatting, the quality of the output
should be better.

5. Similarities with other content creation workows
The demand for more XML content has shifed the work of creating it from technical writers to other departments of a
company. Since these people work only occasionally on content creation the investment to have them set up the necessary
tools does not pay of.

176

Conclusion

The idea of having a self-service project template that has all the conguration in place can be applied in other scenarios
such as creating similar documentation for multiple products. For example, customizable products whose documentation
has a standard format but the parameters can difer, datasheets for microchips or release notes for a sofware product.

For cloud-based services, the ease of setup is at odds with other business driving factors such as security, legal compliance,
and brand exposure. For example, if a company provides a back-end service as using a freemium pricing model, they want
the user to be aware that about that service. So, it is not uncommon that during the setup users will be exposed to a screen
presenting that service.

However, in an enterprise environment, these factors are not that relevant which can provide an even more intuitive
user on-boarding experience. For example, a back-end service can is usually licensed by the company and congured by
a system administrator and is totally transparent to the end-user.

6. Conclusion
The paper presented how a serverless solution for an XML-based paper submission workow can be developed with
relatively low efort.

An important observation is that although the solution is built from a number of of-the-shelf tools and services, most
of them are not specically designed for XML-based solutions, but for web applications.

The source code for the project is available online at https://github.com/oxygenxml/markupuk-2019-paper. We plan to
customize it further with conference specic constraints expressed as Schematron rules. We also plan to make it possible
to generate the PDF preview on demand without having to commit the paper in the Git repository rst. This will imply
integrating with a Functions as a Service platform that will run the publishing process.

Bibliography
[JATS] Hassan Tamir: Trialling a new JATS-XML workow for scientic publishing. 16 February 2019, Round-Trip

PDF Solutions http://archive.xmlprague.cz/2019/les/xmlprague-2019-proceedings.pdf

[PLATF] Lorena Parra: Comparison of Online Platforms for the Review Process of Conference Papers. 2013, Universidad
Politécnica de Valencia https://www.thinkmind.org/download.php?articleid=content_2013_1_30_60033

[REV] Mark Bernstein: Reviewing Conference Papers. 2008, Eastgate Systems Inc. https://www.markbernstein.org/
elements/Reviewing.pdf

[OAUTH] RFC 6749: The OAuth 2.0 Authorization Framework, IETF https://tools.ietf.org/html/rfc6749

[PROGIT] Scott Cachon: Pro Git. 2014, https://git-scm.com/book/en/v2

177

https://github.com/oxygenxml/markupuk-2019-paper
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
https://www.thinkmind.org/download.php?articleid=content_2013_1_30_60033
https://www.markbernstein.org/elements/Reviewing.pdf
https://www.markbernstein.org/elements/Reviewing.pdf
https://tools.ietf.org/html/rfc6749
https://git-scm.com/book/en/v2

Dispelling Myths About Markup Formats:
When What Why Where

Liam Quin, Delightful Computing

Abstract

Misunderstandings about the goals and strengths of diferent document and data interchange formats
can lead to suboptimal decisions. Such misunderstandings appear widespread. The purpose of this paper
is to suggest areas in which each format has strengths, and to provide clear explanations that people can
use to place XML in the context of other current markup systems.

Common misconceptions about XML include statements such as “XML was designed for Web services
and therefore unsuitable for documents;” “XML was designed to replace HTML and has failed;” “XML
cannot transmit semantics of any kind;” “XML is dead.” In fact, XML is alive and well. There are
misconceptions about other formats, too, of course.

179

Introduction

1. Introduction
Declarative markup languages have been around for many years. There were declarative systems built from Unix troff
macro libraries in the 1970s and 1980s, and of course SGML, Scribe, LaTeX and many others attempt to be more or less
declarative and more or less general ways to represent and process documents with computers.

The choice of which markup system to use should be based on clear well-understood criteria. These might include:

• Which notation has a closest t to the document or documents. For example, a document with a lot of mixed markup
and running text will be more dicult to process in some systems than others, as will a multilingual document;

• Which notation has associated tools that perform the processing the project needs;

• Which system the developers like the most or hate the most;

• Which system will be most likely to have active support for the entire duration of the project;

• What will be the costs and what will be the gains of each format;

• What are all the other similar projects using.

Very ofen, the emotional aspects of the decision outweigh the technical aspects. This paper primarily explores the
technical aspects, but also provides the reader with some ammunition to make an efective presentation in the emotional
arena.

The examples of criteria enumerated above do not include the single most important aspects of a decision: the context
and the situation. The context is an emergent property of organizational culture, fashion, predicted usage, and much
more; some of this is listed explicitly here and some not. The situation, or the circumstances around the decision, must
be viewed in terms of the wider context: instructions for identifying radioactive material in a nuclear power plant might
have to be understood for a hundred years or more; a nancial transaction must be archived for a period determined by a
legal statute of limitation; British laws are written on vellum and stored in a stone tower in some cases for a thousand years
or more. But over the lifetime of the information the context in which it is used may change: a nancial record might be
read by corporate accounting staf or, later, by a government auditor.

The available tools will vary, but the organization may have a legal need to make information available regardless of
applications originally used to process it. Similarly, sofware applications, operating systems, even display and user
interface hardware constraints, all change over time. But a bigger question is who determines the format: who determines
what information is stored, and how, and how is it to be used. A document that is read by an application to congure user
preferences is likely designed by a programmer; a transcription of a mediaeval manuscript is more likely to be represented
in ways determined by the people working with the text itself rather than with any particular application.

The following sections attempt to identify good and less successful contexts for diferent markup formats, and, again, to
provide ways of describing these contexts.

1.1. HTML: The HyperText Markup Language (HTML).
The rst standardized version of HTML was described by a combination of prose and an SGML DTD. In this sense, and
one other (see XHTML later in this paper) HTML shares some ancestry with XML However, people working with XML
and with HTML ofen have very diferent ways of looking at markup. The diference can be illustrated by the meaning
of the word “semantics” in the respective communities. In the HTML world, it’s common to hear people to describe
the meaning of an element in terms of what a Web browser does when it encounters the start and end tags. Although
most browser developers no longer refer to start and end tags as separate commands, the idea remains that operational
semantics, Web browser behaviour, is the primary focus of HTML design. Marking up in the sense of identifying the
content of a document seems alien here: there’s no poem element, for example, and tie cite element has no standard way
to identify the author of a quotation or to give a bibliographic reference.

HTML ofers some extensibility: one can use markup such as:

<span class="volno"3

to indicate the issue number of a volume containing a journal within a bibliographic reference. As with “plain XML”
there is no standard way to mark up a bibliography and one is actually more likely in practice to nd simply

3

in practice, or, worse,

180

Markdown

<span class="cn506dw"3

inserted by a content management system, framework, or word processor conversion.

IHTML 5 includes elements such as nav and main, but their goal is to help people and programs navigate round
documents by identifying the functions of diferent parts, not to try and label the parts and have the browser
automatically function appropriately.

HTML, then, is strongest when the Web is the primary end output format. It should be mentioned that there are also
products that support generating PDF for print from HTML and CSS, and that the EPUB 3 standard uses XHTML
(with a move to HTML possible in the future).

A diculty with HTML can be that the content can be dicult to reuse or re-purpose. If you do the work to annotate
your HTML so that audiobooks can be made, or to use class attributes consistently enough that your aircraf repair
manual can be generated automatically from your twenty-thousand-page operations manual, you will be replicating the
work that might already have been done for you with an SGML or XML system: the tools are not generally designed for
large, long, complex documents with precise domain-specic requirements. The primary application domain and usage
context of HTML is the Webb browser.

A benefit of using HTML, however, can be reduced staf training. If your writers are already familiar with HTML, they
can be up and running quickly. Beware, however, that saving a few hours of training does not end up costing you weeks
or months of work when you discover the les are not consistently marked up or contain errors that weren’t agged by
(error-tolerant) HTML systems or Web browsers.

2. Markdown
The name Markdown is of course a play on markup, with the implication that it’s somehow less: less work, not to hard to
understand. For very simple documents Markdown can indeed be easy. In the manner of DEC NotesFiles from the 1970s
and 1980s, one uses ASCII symbols for *bold* and _italic_. Hypertext links are more complex, and tables are supported
only in some of the Markdown variants and can be a nightmare to use in a text editor. The primary context for using
markup is where people edit the text directly in a plain text editor and this means that it is really only intended, and only
suitable for, simple documents. If you are using a tool that edits Markdown and hides the syntax then you might as well
be editing HTML or XML: the primary reason to use Markdown les is that you have tools, such as github or a wiki
of some sort, that consume it.

Since there are no special tools needed, and since Markdown can really only cope with simple documents, the syntax can
be easy to learn and training costs can be low. Markdown is generally close to a subset of the format used by Wikipedia,
so, with extensions as needed, it can clearly scale.

The semantics recorded in Markdown is purely operational: go bold, go italic; whilst some variants have additional
tagging support, the primary assumption is that the appearance of the document (or the sound, when read out loud by
text to speech) is primary.

Markup is fabulous, though, for very simple README documents for projects such as computer source code, where the
le can be read easily in a plain text viewer or editor without any special tools.

If you choose to use Markdown for a project, be aware there are competing versions and make sure you have a fully
compatible tool-set if you need one. If, however, you have gures, tables, footnotes, cross-references, running page
headers (or even page numbers), or other features that go outside the normal remit of Markdown, or if you foresee a need
to reuse the information and extract information from the text, you will almost certainly be better of with a richer format.

If necessary, you can provide a tool to read a specic version of Markdown and convert it to (say) XML-encoded TEI
documents for users in a text-based environment.

3. RDF and Linked Data
The Resource Description Framework (RDF) is really a data model for exchange of knowledge representation. Linked
Data conforms to the same model: triplets of (subject, relationship, object), where all three terms are URIs (Uniform
Resource Identiers), so that if two triplets use the same URI for the same subject then the properties from both triples
apply to it, and so on.

RDF is not a model for documents. One can extract triplets from documents, but if it is to be useful the extraction is
normally lossy: a list of the characters and places mentioned in a novel such as Star Wars is a common example, together
with externally-derived triplets describing relationships such as was born at or loves or caused to become frozen. The list

181

JavaScript Object Notation (JSON)

does not include every occurrence of every word in the novel, and the book cannot be reconstructed from the list. This
example is very typical in its relationship to information, to the original book. Query languages such as GraphQL and
SPARQL can then be used to explore the data and to support applications. Note that Linked Data may in many cases
represent a complete data set, but even there the data is normally unordered, unlike words and paragraphs in writing.

A weakness of RDF is that triplets are not natively labeled as to their source. In practice a triple store (a content
management system for RDF) will normally extend the model to add permissions and information about who added each
triple, but this is not normally accessible to the standard query languages. RDF stores may also support federated queries,
in which case the additional information is not passed between systems, potentially leading to trust and security issues.

The RDF model is also used for the Really Simple Syndication format (RSS), so that RSS les are simple XML
representations of an RDF data model.

RDF values are simple (atomic) strings: there is no direct support for mixed content such as running text in HTML,
and text fragments containing element markup, such as one nds in RSS, have to be escaped and are treated by RDF
systems as simple strings. RDF query languages tend to be weak in string processing, exacerbating diculties here: you
can’t generally use SPARQL to nd all RSS feed items containing an HTML link to a given resource, for example.

Linked Data in all of its forms provides ways to think about property-based reasoning, and can be very useful when
working with metadata, especially in conjunction with other document formats.

4. JavaScript Object Notation (JSON)
JSON rapidly became very popular in the realm of Web development. It uses a mixture of array, which are ordered
sequences of JSON items; objects, which are unordered collections of key-value pairs in which the key is a string and the
value is any JSON item,;and, nally, values such as integers and strings. This is sucient to represent static JavaScript
objects (there are no function items).

JSON has taken over from XML for the purpose of exchanging program-generated data via distributed APIs (largely
replacing the use of SOAP) and for conguration of Web-based sofware. The notation uses square brackets for arrays
and curly braces for objects, making it familiar to programmers of C-like languages and also allowing automatic brace-
matching in many widely-used text editors.

Large JSON les can be dicult to edit directly, as you can end up with large numbers of closing braces in a clump,
reminiscent of LISP. It’s slightly easier than HTML in this regard, though, where you can end up with masses of </div>
tags together, given that text editors tend not to support tag-matching (show me the start tag corresponding to this close
tag) but do support brace-matching.

JSON does not support mixed content: that is, you can’t have running text with embedded markup. You can represent
mixed content with an array of mixed strings and objects, but is not suitable for manipulation without tools or programs,
and is considerably more verbose than the corresponding Markdown or even XML or HTML markup in this case. It’s
also easy to lose signicant spaces around the embedded markup when working in this fashion.

There are libraries to import JSON les, and ofen to export them, in all major programming languages today. Ofen,
reading JSON results in language-native objects, so that no query language is needed in simple cases. This is a marked
contrast from XML or HTML, where the result is usually a relatively complex data structure.

JSON, then, is strongly favoured by many developers over any of the other formats in this paper because it is much easier
for them. JSON belongs in a context in which the format of the data, the exact representation of information, and even
the choice of what is to be represented is in the hands of programmers. In contexts in which document authors own their
data and choose the contents, or where interoperability of the information between applications is paramount, JSON is
much weaker than XML or RDF. However, see the next section for JSON and RDF.

5. JSON-LD: JSON meets RDF
JSON-LD is a way to represent linked data in JSON. It provides a mechanism to reduce the verbosity of the result by a
context that authors can use to give short names for URIs in the data.

JSON-LD is intended for environments and contexts (in the sense of this paper) in which JSON is already in use and
there’s a need to add support for linked data using the RDF data model, perhaps to support graph-based query languages.

Although JSON-LD combines the advantages of both JSON and RDF, it also inherits many of their disadvantages: the
underlying data model of RDF is not extended to include the source of triplets, and mixed content is still not directly
supported.

182

Portable Document Format (PDF)

6. Portable Document Format (PDF)
A disadvantage in some applications of all of the above formats is that they are not easily printed in a useful way. HTML
is the closest, as Cascading Style Sheets (CSS) can be used with formatting sofware to make print-ready pages, but it is
necessary to write separate CSS stylesheets for diferent HTML documents. The result of formatting HTML for print is
usually PDF, which raises the question of whether PDF is useful as a document interchange format.

PDF documents can be printed: PDF is a page description language and a PDF le describes the exact location of the page
of everything inside it, both text and graphics. Unfortunately for document interchange this also means that PDF les
cannot be edited to insert or delete content: the remainder of text on the page does not normally reow.

The PDF format contains machinery for embedding fonts, and for complex graphics. It is a compressed form of the
PostScript language. Using PDF can provide page fidelity in many cases, in the sense that printed pages will look the same
everywhere, scaled if desired to print on diferently-sized paper.

Since PDF is not easily edited, and has limited accessibility to people who are blind or who cannot distinguish certain
colours or who need low (or high) contrast, it is not suitable as a primary document format.

Reading and processing PDF in programs is dicult; there are libraries for C and JavaScript and other languages, but the
resulting data structures are complex. There are no standard query languages for PDF, and it should be noted that even
determining natural-language word-breaks is unreliable, using heuristics based on the position of each letter of the word
on the page to try and detect the spaces. In addition, it is not usually possible to distinguish between a line-break at a
hyphen in the original input and a hyphen inserted to facilitate line-breaking: text formatting is lossy so that the original
document cannot be reconstructed reliably.

7. Domain-specic XML Vocabularies
Like RDF, XML is really a framework for one’s own information: it does not come with much in the way of predened
semantics, whether behavioural or extrinsic. Like HTML, XML has a simple tag-based syntax for representing elements,
but unlike HTML, XML does not predene any element names. There is also no single data model for XML, although
a few data models predominate in practice, primarily DOM and XDM.

Since XML does not predene element names, and also does not support anonymous (unnamed) elements, one needs a
set of XML names for elements (and their attributes) to use. A set of element names and constraints on them can loosely
be called a vocabulary. To make XML useful, there are three common paths people take, depending on their situation
and the project context: to use a domain-specic XML vocabulary; to extend an existing XML vocabulary; to develop
a custom XML vocabulary. Subsequent sections will describe each of these in turn, including some examples and some
exceptions.

Some frequently-heard complaints about XML should be mentioned here. People say that XML les are large compared
to, for example, JSON; this is ofen true although XML compresses well. But the names repeated in XML end tags and
the quotes around attribute values also provide a level of redundancy: experience with SGML minimization showed
that the ability to omit these increased support costs considerably, because they created common situations in which the
document would parse and even validate, but the interpretation of the parser difered from that of the human user.

Another common complaint about XML from developers is that the APIs for working with XML are inelegant.
Although this was true feen years ago, today there are ofen much more convenient APIs, ranging from XQuery
and XPath to JQuery. But in any case the primary question of context for an XML project is whether the document
maintainers are in control of the markup or whether the developers are. The former case is a primary use-case for XML.
When developers are in control, JSON may be a better t for short-form key-value or object-like documents. XML
remains the format of choice for mixed content, where there is a mixture of text and markup at the same level.

8. XHTML™: The Extensible HyperText Markup Language
XHTML is a widely-used XML vocabulary that is also a reworking of HTML into XML. There are two primary versions:
1.x and 5. Version 5 is the current version, and is an XML syntax for HTML 5. The original XHTML 1 versions supported
customization using XML DTDs, the original mechanism to dene an XML vocabulary. XHTML 5 does not use
grammar-based validation, and is primarily intended for use in Web browsers. XHTML is also used by the EPUB standard
for electronic books, where it has the advantage that a device-specic rendering engine can be used without having to
worry about full HTML compatibility. This is important because Web browsers tend to be very exible in displaying
les containing errors, so existing content ofen contains a lot of syntax errors, which in turn means any sofware that
tries to process arbitrary HTML needs a relatively complex parser and a lot of compatibility code. With XHTML, the
syntax checking is strict, and enforced by the XML parser.

183

DocBook

Since XHTML les can be read by XML parsers, they are amenable to processing with XSLT and XProc, and to being
stored in databases and queries with XQuery. Modern versions of XSLT and XQuery can also create XHTML 5 les.

XHTML, like HTML, is designed in the context of Web browsers. Like all sofware, Web browsers evolve. Over time,
elements change meaning or are dropped entirely. However, HTML 5 dropped the idea of including a version number
in HTML les, which may cause problems with long-term archiving. Of course, any vocabulary could change over time,
but the mitigation there is to combine grammar-based validation and specic version marking; HTML and XHTML
do neither.

XHTML is good for projects at the edge of XML and the Web, because they are equally usable by both tool-sets. The
element names are also understood by Web search engines, so that serving XHTML les directly on the open Web makes
sense and works. XHTML 5 is a good choice for generic documents such as blogs, as well as for Web-based applications.
It has deciencies in validation compared to domain-specic vocabularies, but it would also be fair to consider XHTML
to be a domain-specic XML vocabulary for sharing documents on the World Wide Web. The name (X)HTML is
sometimes used to refer to the vocabulary independently of whether the XML or slightly diferent HTML syntax is used.

If you are producing your own domain-specic vocabulary, it is worth considering using (X)HTML 5 element names
for plain text paragraphs and for markup within them, simply because (X)HTML is, overall, the most widely-used
vocabulary on the planet. However, beware of false promises: if you use p for paragraphs, people may expect to be able
to use ol for a list, i for italics, and so on.

9. DocBook
DocBook is a domain-specic XML vocabulary widely used for technical documentation. There are widely-available
tools to convert documents between DocBook and a wide variety of other formats, including ODF (q.v.) and into PDF.

DocBook is a fairly large vocabulary, and uses the “element pool” concept described by Eve Maler and Jeanne El
Andaloussi in Developing SGML DTDs to make authoring easier: a core set of element names are available pretty much
everywhere.

Sometimes people criticize DocBook because the most common conversion to HTML does not produce elegant pages,
but that is not a feature of DocBook itself, and when the conversion goes well, people do not realize the original format
was DocBook.

10. Customizing DocBook: Mallard
DocBook from the beginning provided for extensions, using an SGML and XML DTD syntax to allow people to add
their own elements and modules. But sometimes you want to reduce rather than extend.

A diculty for authors using DocBook can be that at any given point in a document there can be a bewilderingly
large number of possible elements that can be inserted. People working with DocBook all day quickly learn them, but
occasional users can nd this to be a barrier. Mallard is a subset of DocBook that was devised for writing online help
the GNOME project, and is an example of a customization. Mallard also has its own Markdown variant, Ducktype.
Mallard also adds semi-automatic linking between topics, so that some processing is required before the les are usable
by DocBook tools, but that is not an issue in the context of online help for the GNOME desktop.

Note: Although DocBook has its own extension mechanisms, Mallard ended up as a standalone system, and today uses
elements from HTML such as p and em rather than para and emphasis of DocBook. Like many project-specic extensions,
it evolved.

Starting of with an industry-standard vocabulary and customizing it can considerably reduce the work needed to develop
a format, but people within the project have to make a conscious decision about the value of having their documents
conform to the original vocabulary.

11. The Text Encoding Initiative (TEI)
The Text Encoding Initiative is both an organization and an eponymous vocabulary and associated methodology for
transcribing texts for the purpose of analysis, study, and the production of fac simile editions. It is widely used in the
Digital Humanities.

The TEI vocabulary was originally intended always to be customized to particular academic projects. However, a core
subset, TEI Lite, became popular. The TEI Consortium provides an extension mechanism, One Document Does It

184

Open Document Format (ODF), OOXML

All (ODD), which simplies making a customization of TEI, and in particular one that includes and combines specic
“modules” such as one for drama or one for transcribing natural-language dictionaries.

The primary context for using TEI is academic text processing and study of texts. An advantage of using it in that context
is the high level of expertise and availability of assistance from other academics, as well as tools

12. Open Document Format (ODF), OOXML
Whereas PDF les are compressed binary extensions of the PostScript language which, when executed, produce page
images, ODF and OOXML are XML representations, again binary and compressed but extractable as text. However,
rather than specifying the position of items on the page, ODF and OOXML provide an XML-based representation of
editable documents.

Word processors generally are strong in their tools for commenting on documents and performing collaborative reviews.
The model is that a reviewer sends an annotated copy of a document to the author, who then in turn reviews the
comments and suggested changes; this model ts well with many social contexts of writing and working with documents.

The ODF and OOXML formats were designed to serialize OpenOce and Microsof Word™ documents (respectively)
to XML, and support document revision. Unlike PDF, ODF and OOXML documents are intended to be editable by
the recipient, and text reows.

Unfortunately, the OOXML specication, despite being very large, is also incomplete. In addition, the XML is written
in the word-processing implementation domain, not in the user’s problem domain. The XML is complex and relatively
dicult to work with, although freely available libraries and XSLT transformations exist to work with them. Word
processor formats tend not to nest structures very much: for example, list items tend to be considered as automatically-
numbered paragraphs and not to be nested inside a containing list element. Points at which there had one been style
changes or selection boundaries may also be retained in the markup, further complicating processing.

Word processing les are not generally ideal for archiving or interchange except in specic contexts such as the need for
review or specic print-based workows. Generated HTML may also have accessibility problems, and unless users are
systematic with the use of named styles there tends to be only weak semantic labeling. Word processors in many cases
reduce the apparent cost of writing, because they make it seem easy. Unfortunately in a wider context this can merely
result in increasing costs and complexity elsewhere in workow processes when ner-grained control over markup and
document features may be needed. In this regard, word processor les can be similar to HTML documents. In all cases
nal archived documents need to be saved in format that is independent of any particular version of any sofware.

13. Raster Images
Although raster (bitmap) image formats such as TIFF, PNG, GIF ,BMP, JPEG and so forth can be suitable for non-
textual content, text inside such image formats is really just a picture of text: it cannot be searched or copied and pasted,
and text readers are not able to speak it out loud.

Note that JPEG images in particular use a lossy compression, which introduces “artifacts” that can be visible and can
hinder optical character recognition or other reuse of the les.

Document page-images are most ofen used in situations where digital versions of original documents are unavailable and
paper copies have been scanned. For archival use it’s important to use an image format that is open and standard and that
has as few interoperability problems as possible. PNG is better than TIFF in this regard, since TIFF les vary between
platforms, but both are better than Windows BMP or PhotoShop PSD (proprietary) or JPEG (lossy).

14. Conclusion
The purpose of this paper is to discuss some formats, both XML and non-XML, with a perspective of the contexts in
which each format is appropriate. There is no single “best” format, and no single way to represent information digitally.
Rather, the context in which information will be used determines the perspective from which a choice should be made.

Bibliography
[DB5SPEC] Norman Walsh: The DocBook Schema. Working Draf 5.0a1, 29 June 2005, OASIS. http://

www.docbook.org/specs/wd-docbook-docbook-5.0a1.html

[SGMLDTD] Eve Maler, Jeanne El Andaloussi: Developing SGML DTDs. 15 December 1995,Prentice Hall PTR

185

http://www.docbook.org/specs/wd-docbook-docbook-5.0a1.html
http://www.docbook.org/specs/wd-docbook-docbook-5.0a1.html

Validating selector
Syd Bauman, Northeastern University Digital Scholarship Group

Abstract

I needed a way to validate that the value of tei:rendition/@selector was a proper CSS3
selector. So I wrote a regular expression to do so. An 18,385-character-long regular expression. And it
seems to work.

187

Introduction

1. Introduction
Starting with P3 in 1994 (i.e., over two years before CSS1 was released), the Text Encoding Initiative Guidelines for Text
Encoding and Interchange supported a mechanism to indicate a default rendition, a way of saying “all emph elements
were in bold italics in the original.” The method used to indicate with which element type a particular default rendition
was associated was to give the element type as the value of the gi attribute of the tagUsage element. The value
of this attribute could be validated in broad strokes by giving it a datatype of teidata.xmlName (which boils down to
xsd:NCName). Furthermore, it could be checked to be of an element type that occurs in the document using some simple
Schematron:

<sch:let name="instanceTypes"
 value="distinct-values(//tei:TEI/tei:text//tei:*/local-name())"/>

<sch:pattern>
 <sch:rule context="tei:tagUsage[@gi]">
 <sch:assert test="@gi = $instanceTypes">
 @gi should contain the name of an element that is within the
 <text> of the document.
 </sch:assert>
 </sch:rule>
</sch:pattern>

Starting in 2015-10 with [P5] [2.9.0], TEI introduced a new method for the same purpose (and then phased out the
original method). In this new method, rather than simply giving the element type to which a default rendition applied,
a user species to which elements a default rendition applies using the CSS selection mechanism. This allows far greater
exibility and precision in expressing to which instance elements a default rendition applies, at very little to no cost in
processing when using CSS to directly render TEI. For example, it is quite common in early modern printed books to
have the signatures [https://en.wikipedia.org/wiki/Signature_mark] centered on the bottom of certain pages, and the
catchwords [https://en.wikipedia.org/wiki/Catchword] on the bottom right of each page. Each of these phenomena is
encoded in TEI using the fw [https://tei-c.org/Vault/P5/3.5.0/doc/tei-p5-doc/en/html/ref-fw.html] element, but with
diferent values of its type attribute. Thus it would not be surprising to nd the declarations in Example 1 [188]
in a teiHeader.

Example 1. Sample renditions

<rendition selector="fw[type='sig']">text-align: center;</rendition>
<rendition selector="fw[type='catch']">text-align: right;</rendition>

However, there is a signicant cost to this improvement in the system with respect to our ability to validate.1 The TEI
only denes selector as teidata.text (which boils down to the RELAX NG string datatype).

This struck me as insucient, and when I found a simple syntactic error in a selector in one of our textbase les, I
decided to try to improve on the situation. The TEI does not say from which version of CSS the selector syntax should
be taken, so I chose level 3 ([sel3]2).3 The only formal constraint system available in the TEI schema language4 above and
beyond enumerated lists of values and XSD datatypes is the W3C regular expression language. Thus I set about writing
a regular expression to validate CSS3 selectors.

2. Against all odds
According to several sites and Stack Overow answers,5 the CSS3 language is not regular, and cannot be parsed with a
regular expression. So how was I able to do this? I think there are three contributing factors.

1It is also costly to use this system when one wishes to convey the indicated renditions when converting the TEI to some other markup language, e.g.
XHTML or ePUB. That is a topic for another paper, though.
2Since I did this work, a newer version, [sel3N], has been released. The new version seems at rst blush to be substantially the same as the one I was
using; section 4 Selector syntax is word for word identical.
3 I was at the time blissfully ignorant of [sel4], which is still in Working Draf.
4Pure ODD. See various discussions including a brief overview [https://wiki.tei-c.org/index.php?title=ODD#.22Pure_ODD.22], the TEI
introduction [http://www.tei-c.org/Support/Learn/odds.xml], an Extreme Markup Languages paper on ODD [http://conferences.idealliance.org/
extreme/html/2004/Burnard01/EML2004Burnard01.html], a Journal of the TEI paper on Pure ODD [http://jtei.revues.org/842], the specication
[http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TD.html], or the description of ODD processing [http://www.tei-c.org/release/doc/tei-p5-
doc/en/html/USE.html#IM].
5For example, https://stackoverow.com/a/12575871/9741160, https://stackoverow.com/a/12126644/9741160, and of course section 10.1 of [CSS3].

188

https://en.wikipedia.org/wiki/Signature_mark
https://en.wikipedia.org/wiki/Signature_mark
https://en.wikipedia.org/wiki/Catchword
https://en.wikipedia.org/wiki/Catchword
https://tei-c.org/Vault/P5/3.5.0/doc/tei-p5-doc/en/html/ref-fw.html
https://tei-c.org/Vault/P5/3.5.0/doc/tei-p5-doc/en/html/ref-fw.html
https://wiki.tei-c.org/index.php?title=ODD#.22Pure_ODD.22
https://wiki.tei-c.org/index.php?title=ODD#.22Pure_ODD.22
http://www.tei-c.org/Support/Learn/odds.xml
http://www.tei-c.org/Support/Learn/odds.xml
http://www.tei-c.org/Support/Learn/odds.xml
http://conferences.idealliance.org/extreme/html/2004/Burnard01/EML2004Burnard01.html
http://conferences.idealliance.org/extreme/html/2004/Burnard01/EML2004Burnard01.html
http://conferences.idealliance.org/extreme/html/2004/Burnard01/EML2004Burnard01.html
http://jtei.revues.org/842
http://jtei.revues.org/842
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TD.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TD.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/USE.html#IM
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/USE.html#IM
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/USE.html#IM
https://stackoverflow.com/a/12575871/9741160
https://stackoverflow.com/a/12126644/9741160

Writing the Regexp

subset of strings. First, I was not dealing with the entire CSS3 language, but with only a distinct subset, selectors. That
said, section 10.1 of [CSS3] asserts that even the selector syntax alone is an LL grammar, which implies it is not regular.

subset of task. I did not need to actually process the selector — I did not need to determine to which instance elements
in the document the specied default rendition should apply — I merely needed to know whether a CSS3 processor
could process the selector. Thus I had no need to parse selectors into their component segments, but rather had only the
somewhat simpler task of ascertaining if a given string is a proper CSS3 selector or not.

subset of knowledge. Perhaps most importantly, I did not know it was impossible until afer I’d done it. If I had read
that CSS3 could not be matched by a regular expression before I had tried this, I may not have been smart enough to
think “well, I only need the selector bit; and I don’t need to parse it, only to validate, so maybe a regular expression will
do.” Quite likely I just would not have tried.

Some of the world’s greatest feats were accomplished by people not smart enough to know they
were impossible.

—Doug Larson

3. Writing the Regexp
CSS3 selectors are complex. For example, blockquote > div p6, div.stub *:not(:lang(fr))7,
|[a|foo~="bar"], *|*[|class~="bar"]8, and stub ~ [|attribute^=start]:not([|
attribute~=mid])[|attribute*=dle][|attribute$=end] ~ t9 are all valid CSS3 selectors. And
while these are probably somewhat complicated for real-life applications, they are simple compared to what a CSS3
selector could be.

So how does one write a regular expression for something this complex? The answer, of course, is rather than trying to
write the regular expression directly, you write a program to generate the regular expression. I have used this approach in
the past, nding that it is generally not too dicult to manually convert a small EBNF grammar or other set of formal rules
into a small program to generate a corresponding regular expression.10 Typically each non-terminal becomes a variable,
dened in terms of constants (for the terminals) and the variables that have been dened so far (for the non-terminals).

As a trivial example, Example 2 [189] is a small Perl program that generates a POSIX extended regular expression
that matches an integer, as dened by the EBNF provided in the Wikipedia page on EBNF [https://en.wikipedia.org/
wiki/Ebnf].11

Example 2. A Perl program that generates a regular expression

#!/usr/bin/env perl
#
Copyleft 2019 Syd Bauman and Northeastern University Digital
Scholarship Group.

No parameters; reads no input. Writes out a regular expression
that matches an integer, where integer is defined by the EBNF
in https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form:
| digit excluding zero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
| digit = "0" | digit excluding zero ;

6Nondeterministic matching of descendant and child combinators [https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/at/css3-
modsel-86.xml]
7NEGATED :lang() pseudo-class [https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/at/css3-modsel-67.xml]
8Attribute space-separated value selector with declared namespace [https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/at/css3-
modsel-99.xml]
9Dynamic handling of attribute selectors [https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/at/css3-modsel-d3.xml]
10Of course, since an EBNF grammar can represent any context-free language (Chomsky Type 2), there are some EBNFs that cannot be represented
by a regular language (Chomsky Type 3), although some regular expression languages (e.g., PCRE) have extensions that allow them to represent any
context-free grammar.
11Readers who are well versed in PCRE will know that the EBNF can be represented directly in the regular expression, e.g.:

(?(DEFINE)
 (?<digit_sans_zero> (1|2|3|4|5|6|7|8|9))
 (?<digit> (0|(?&digit_sans_zero)))
 (?<natural_number> (?&digit_sans_zero)(?&digit)*)
 (?<integer> (0|(-?(?&natural_number))))
)^(?&integer)$

While this is impressive, and very useful in its own right, it is not helpful to me here as I am interested in generating a W3C regular expression, not
in using PCRE.

189

https://en.wikipedia.org/wiki/Ebnf
https://en.wikipedia.org/wiki/Ebnf
https://en.wikipedia.org/wiki/Ebnf
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-86.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-86.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-86.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-67.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-67.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-99.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-99.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-99.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-d3.xml
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/xml/full/flat/css3-modsel-d3.xml

Generating the generator

| natural number = digit excluding zero, { digit } ;
| integer = "0" | ["-"], natural number ;
The resulting regexp is intended to be a POSIX ERE, but would
also work as a PCRE or a W3C regular expression, and probably
lots of others. (But not a POSIX BRE or an Emacs LISP regexp.)

$digit_sans_zero = "(1|2|3|4|5|6|7|8|9)"; # could be just "[1-9]" :-)
$digit = "(0|$digit_sans_zero)";
$natural_number = "($digit_sans_zero($digit)*)";
$integer = "(0|(-?$natural_number))";

print STDOUT "$integer\n";
exit 0;

While I am sure there has been much written on this general approach,12 I was not looking for general-purpose (regular)
grammar to regular expression conversion, I was just looking to convert a particular grammar to a regular expression.

3.1. Generating the generator
Thus I fell back on old habits, and began writing what I thought would be a short routine to write a moderately long
regular expression. Because I had used Perl for this in the past, and because Perl is interpreted (and thus an easy language
with which to perform rapid cycles of tweak-and-test), I wrote this program in Perl. This, I now believe, was a mistake.

The immediate output of the program was to be a regular expression — that is, a string — which I imagined I would
generate once (afer building and debugging the generation routine) and copy into an appropriate schema. Thus a
string manipulation language like Perl seemed appropriate. However, in my zeal I forgot a universal truth about writing
programs, even simple ones: they need to be tested and debued, repeatedly and thoroughly. In this case each round of
testing required that the string be copied from standard output into a schema against which some test data could be
validated. (Remember that I could not use Perl to directly test the regular expression against test data, because I was not
generating a Perl-avored regular expression, but rather an W3C-avored regular expression.) Thus in order to save time,
it made sense for the program to either insert the regular expression into the test schema for me, or to write a complete
test schema (that includes the regular expression) anew each time it was run. While the former technique is perhaps more
desirable from a point of view of separation of concerns, the latter is much easier to write and is preferable insofar as it
keeps all the concerns (as it were) in one le.

My preferred schema languages are RELAX NG and ISO Schematron,13 either of which can be used to test the value
of tei:rendition/@selector against a W3C-avored regular expression. Thus I soon modied the generation
program so that instead of writing just a regular expression to standard output, it wrote a small, but complete RELAX
NG schema or a small, but complete, XSLT program, either of which was designed to test only the value of selector
against the (current version of) the generated regular expression.

The reason for generating XSLT output instead of ISO Schematron output was purely pragmatic. The Schematron
processor I use works by converting the Schematron to an XSLT intermediate (using XSLT), and then transforming
the test document using the intermediate XSLT. By writing XSLT directly from the generation program, I could save a
conversion step during each test and still use the same engine to execute the regular expression.

Details about the design of the output RELAX NG schema and XSLT program follow. But their mere existence explains
why my use of Perl was a mistake. Both of the desired output formats were XML, and for me XSLT is the best language
to use for generating XML as output.14 (Even those who do not think of XSLT as the best language for writing XML
will admit that it is far better than Perl.)

3.2. Case
If there is a method of asking a RELAX NG validator to use a regular expression case insensitively, I do not know it.
Thus the regular expression is written case sensitively. E.g., the sub-pattern [A-Za-z] occurs frequently where [A-
Z] would be acceptable if the pattern could be applied afer case folding.

12A quick web search demonstrates that discussions of this topic come in all avors, from stackoverow posts to class slides, to full academic papers.
See, e.g. [FA2RE], [TPoRE], [REBNF] [NFA2RE], [DFA2RE], and [REGGE].
13That is, my preferred schema languages other than TEI PureODD.
14I believe it is very advantageous to use a language, like XSLT, that outputs a tree in serial format as XML — rather than as a sequence of characters,
some of which are pointy brackets — and thus cannot make most well-formedness errors. Without such a language, simple well-formedness errors
creep in constantly. Even in the 297 XML les that make up the XML version of the W3C CSS3 Selectors Test Suite Index [https://www.w3.org/Style/
CSS/Test/CSS3/Selectors/current/], which look to me like they are generated by a program, I found four les with one well-formedness error each.
(“
” without an end-tag in all four cases).

190

https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/
https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/

Language

It is slightly advantageous to be absolutely explicit about which characters are allowed, so in one sense this verbosity is an
advantage. On the other hand, there are two signicant disadvantages:

1. It adds verbosity. The generated regular expression is more than 1000 characters longer than it would be if case
insensitivity could be assumed.

2. It means that the generated regular expression is in some cases technically incorrect. For example, [CSS3] denes a
pseudo-class :link. It never mentions a pseudo-class :LINK, and I have never seen it used in uppercase in the real
world or in a test suite. However, section 3 says quite clearly “All Selectors syntax is case-insensitive within the ASCII
range (i.e. [a-z] and [A-Z] are equivalent)”. Thus either matching should take place case insensitively, or wherever the
regular expression says link it should really say [Ll][Ii][Nn][Kk].

3.3. Language
The rst and only parameter accepted by the CSS3 :lang() pseudo-class does not need to be a valid language tag per
[BCP47]; it only needs to be a valid CSS 2.1 identier. However, because BCP 47 is the system used by TEI to indicate
language (on xml:lang), use of other language identiers in this context does not make sense. Thus the generated
regular expression requires a BCP 47 language tag as the parameter to :lang().

Rather than re-invent this particular wheel, I guessed that others had already written a regular expression that would
match a BCP 47 tag. Indeed I found more than one readily available on the web. The program currently uses a regular
expression adapted from one made publicly available by its author, Seb Insua, a consultant sofware engineer based in
London.

3.4. What the generator generated
The Perl generation program is called, somewhat unimaginatively, CSS3_selector_regex_generator.perl. As mentioned
above, while its primary output is conceptually a long regular expression, in practice the primary output is that regular
expression in the context of either a RELAX NG schema (XML syntax) or an XSLT program designed just to test the
regular expression. In both cases, the schema could have been designed to test only that which was the target of this entire
endeavor: the tei:rendition/@selector attribute. But I chose instead to have the output schemas test any
selector attribute, for reasons explained in Section 3.5 [192], below.

3.4.1. RELAX NG schema

The output RELAX NG schema is designed to constrain only the value of selector, nothing else. Thus it allows any
outermost (“root”) element from any namespace (including the null namespace), which is allowed to have any attributes
from any namespace (including the null namespace) and any children including text intermingled with any number of
any element from any namespace (including the null namespace); each child element in turn is also allowed to have any
attributes from any namespace (including the null namespace) and any children including text intermingled with any
number of any element from any namespace (including the null namespace), except that any selector attribute on
any element must match the generated regular expression. Thus the only error messages generated by validation against
the schema assert that the value of a selector attribute is not a CSS3 selector.15

The main declaration of the RELAX NG schema is shown in Figure 1 [191]; the placeholder
GENERATED_REGEXP_HERE indicates where in the schema the generated regular expression is placed. The schema
is shown in the compact syntax although it is generated in the XML syntax.

Figure 1. RELAX NG schema constraint

start = ANY
ANY =
 element * {
 attribute * - selector { text }*,
 attribute selector {
 xsd:string {
 pattern = "GENERATED_REGEXP_HERE"
 }
 }?,
 (text | ANY)*
 }

15Or, of course, messages indicating that the input document is not well-formed XML, but for our purposes here those are messages from a pre-
validation XML parser, not from the validator itself.

191

Rapid cyclic debugging

3.4.2. XSLT “schema”

The generated XSLT stylesheet used as a schema is deliberately more verbose. It generates a single line of text output
for each occurrence of selector in the input which indicates whether or not the value of said selector
matches the generated regular expression or not. Figure 2 [192] shows a pared-down version of the generated XSLT
stylesheet. Again, GENERATED_REGEXP_HERE indicates where in the output the generation routine places the
regular expression.

Figure 2. XSLT “schema”, validation

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="3.0">

 <xsl:variable name="selector_regex">
 <xsl:text>GENERATED_REGEXP_HERE</xsl:text>
 </xsl:variable>
 <xsl:variable
 name="anchored_selector_regex"
 select="'^'||$selector_regex"/>

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="//*[@selector]"/>
 </xsl:template>

 <xsl:template match="*">
 <xsl:value-of select="'selector “'
 ||@selector
 ||'” is		'"/>
 <xsl:if
 test="not(matches(@selector, $anchored_selector_regex))">NOT </xsl:if>
 <xsl:value-of select="'valid.
'"/>
 </xsl:template>

</xsl:stylesheet>

3.5. Rapid cyclic debugging
With the generation of a complete RELAX NG schema or XSLT program instead of just a string, I could quickly
and easily test that the regular expression generated was at least a valid regular expression just by validating an XML
document (any XML document) against the generated RELAX NG schema or transforming an XML document (any
XML document) with the generated XSLT stylesheet. In either case, the processor (for me that generally means jing or
Saxon) will generate an error message if the string being used as a regular expression is not in fact parsable as a W3C
regular expression. For example, for the string “This is)bad(” jing will generate an invalid parameter: invalid regular
expression: character is not allowed in this context: This is >>>>)bad(message, and Saxon a Syntax error at char 8 in
regular expression: Unmatched close paren message.

Testing that a valid regular expression works as desired is the next step. In a practical sense, this is quite easy: just take an
XML le that has a test selector on a tei:rendition/@selector, and validate it against the generated RELAX
NG schema or transform it with the generated XSLT stylesheet. But, in a logical sense, this is quite dicult: what selectors
get tested? What strings that are not selectors get tested?

3.5.1. Practical

As mentioned above, rapid cyclic testing is not particularly dicult: just take an XML le that has a test selector on
a tei:rendition/@selector, and validate it against the generated RELAX NG schema or transform it with
the generated XSLT stylesheet. But I am personally fond of creating self-testing systems, in part because it takes literate
programming to a next step, keeping the test cases in with the original documentation and program, thus keeping all the
concerns (as it were) in one le; and in part just because it’s cool.

192

Rapid cyclic debugging

Observing that

• RELAX NG permits elements from namespaces other than the RELAX NG namespace to occur in a grammar (even
as a direct child of rng:grammar), and

• XSLT permits elements from namespaces other than the XSLT namespace to occur in a stylesheet (even as a direct
child of xsl:stylesheet or xsl:transform),

I could insert the desired tests directly into the CSS3_selector_regex_generator.perl program such that
they would be inserted into the output RELAX NG schema or XSLT program as the value of a tei:rendition/
@selector. The regular expression could then be tested against the test CSS selectors by validating the output RELAX
NG grammar against itself (that is, use the generated RELAX NG schema as both the grammar and the document
instance), or by transforming the XSLT stylesheet with itself (that is, use the generated XSLT program as both the
stylesheet and the input document).

3.5.2. Logical

This self-testing system worked quite well while I was in initial development of the regular expression and various sub-
portions thereof, but pretty quickly (well, not that quickly — it took longer than I care to admit to move from initial
development to renement) it became necessary to test the regular expression against an array of possible selectors. Luckily

• lots of CSS les, using a variety of selectors of varying complexity, are readily available both at my own project and
on the web, and

• there are several CSS test suites, including one from the W3C, available on the web.

So, in addition to the few dozen scenarios I had dreamt up, I incorporated thousands of selectors from real CSS les and
test suites. Since my tests would (deliberately) examine any selector attribute, not just one on a tei:rendition
element, I was even able to make test cases consistent (each test on an selector of a rendition) and simultaneously
retain the provenance of each test by using an appropriate namespace for the rendition.

Example 3 [193] is an extract of the generated XSLT showing a few of the namespaces used, and three test
selectors for each of those namespaces. The actual generated XSLT includes the validation portions discussed above,
and tens to hundreds of test selectors for each of over a half dozen namespaces.

Example 3. XSLT “schema”, debugging

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sb="http://bauman.zapto.org/ns-for-testing-CSS"
 xmlns:wpt="https://github.com/web-platform-tests/wpt"
 xmlns:w3c="https://www.w3.org/Style/CSS/Test/CSS3/Selectors/current/"
 xmlns:wo="http://wwo.wwp-test.northeastern.edu/WWO/css/wwo/wwo.css"
 xmlns:pt="https://github.com/benfrain/css-performance-tests"
 version="3.0">

 <!-- This pgm written 2019-06-02T09:57:25 by
 ./CSS3_selector_regex_generator.perl -->

 <!-- ========= debugging ========= -->
 <!--
 legend:
 pt = performance test suite
 wpt = W3C web platform tests for CSS
 w3c = W3C test suite, last retrieved 2019-06-01
 wo = WWO CSS stylesheet, i.e. for Women Writers Online textbase viewing site
 sb = dreamt up by yours truly
 -->
 <!--
 Note: the wpt and w3c sets are very very similar, but not quite
 identical; it is not clear to me there is any real advantage in
 running both, but I am interested in having a lot of test cases
 too see how fast this is, too. Thus both are included.
 -->

193

Resources

 <!-- ********* -->
 <wpt:rendition selector="li,p "/>
 <wpt:rendition selector="p "/>
 <wpt:rendition selector="p[title$='bar'] "/>
 <!-- ********* -->
 <w3c:rendition selector=' stub ~ [|attribute^=start]:not([|attribute~=mid])
 [|attribute*=dle][|attribute$=end] ~ t '/>
 <w3c:rendition selector=' #two:first-child '/>
 <w3c:rendition selector=' #three:last-child '/>
 <!-- ********* -->
 <pt:rendition selector='[data-select]'/>
 <pt:rendition selector='a[data-select]'/>
 <pt:rendition selector='[data-select="link"]'/>
 <!-- ********* -->
 <sb:rendition selector=":not(:lang(en))"/>
 <sb:rendition selector=":not(:lang(en-GB))"/>
 <sb:rendition selector=" :lang(en-GB-x-HPf)"/>
 <!-- ********* -->
 <wo:rendition selector="#popup > div.note.content .bibl-sref "/>
 <wo:rendition selector='#popup > div.note.content .bibl-sref span[class~="moo"],
#popup > div.note.content .bibl-sref-parenless span[class~="moo"] '/>
 <wo:rendition selector=""/>
 <!-- ========= end debugging ========= -->

</xsl:stylesheet>

4. Resources
4.1. Time

I was quite worried that this regular expression would take a long time, perhaps even forever, to run. I was pleasantly
surprised to nd it could be quite speedy. In a test run using the RELAX NG grammar, jing tested over 5900 selector
attributes in under ½ second; well under 0.1 ms each. The typical TEI le will only have a half dozen.

XSLT was impressive, but in the other direction. In one typical test of transforming the generated XSLT with itself, with
only 40 selector attributes in it, saxon9he took almost 03:49, or over 175 ms each.

At the Women Writers Project we currently have 1,685 selector attributes in 449 les, with a range of 0 to 13
selectors per le. Our encoders have been using a schema which incorporates this regular expression for the past 9
months, and no one has complained about speed. Note that our encoders use oXygen with Enable automatic validation
on and set to a delay of 1 s.

4.2. Memory
Whether using jing to validate the RELAX NG schema against itself, or Saxon to transform the XSLT stylesheet with
itself, the java virtual machine required more RAM than the defaults set on my machine. At 4 MiB of stack space (-
Xss4m) jing ran out; at 8 MiB it did not. Saxon did not need extra stack space, but craved an extraordinary quantity of
heap space. Astoundingly (at least to me), at 5 GiB of heap space (-Xmx5g) it bombed; with 6 GiB it ran.

4.3. Storage
The regular expression itself is very large in terms of a string (18,385 characters as of this writing). Thus it is quite
cumbersome and somewhat annoying to manage in almost any le, be it schema, XSLT, or the list of error messages that
helpfully say must match ….

However, in terms of actual storage space, the CSS3_selector_regex_generator.perl program, its
RELAX NG output, and its XSLT output all together take up less than 1.7 MiB on my lesystem. That is, they could
almost t on a 1980s 3½ inch oppy disk.

5. Future work
• I plan to convert the generation program to XSLT in August and early September of 2019.

194

Availability

• Right now testing is not performed rigorously enough — while the regular expression is tested against thousands of
selectors including the entire W3C test suite, the results are simply checked by human eye. This should be automated.
My current thought is to add a selector_is_valid attribute whose value is one of true, false, or (before
being veried, or perhaps in some bizarre cases) unknown.16

• I plan to present the regular expression itself and the XSLT generation program for it at the TEI Members’ Meeting
and Conference in Graz, 2019-09, with the aim of convincing the TEI Consortium to use the regular expression in
the TEI schema.

6. Availability
The current Perl program is available under the GPL in the WWP public code share repository [https://github.com/
NEU-DSG/wwp-public-code-share/]. I expect (or at least hope) to replace it with an XSLT version in August or
September of 2019.

Bibliography
[P5] The TEI Consortium, TEI P5: Guidelines for Electronic Text Encoding and Interchange. https://tei-c.org/

guidelines/p5/

[2.9.0] The TEI Consortium, TEI P5: Guidelines for Electronic Text Encoding and Interchange, Release 2.9.0 [https://
tei-c.org/Vault/P5/current/doc/tei-p5-doc/readme-2.9.1.html] .

[FA2RE] Alexander Meduna, Lukáš Vrábel, and Petr Zemek Converting Finite Automata to
Regular Expressions http://www.t.vutbr.cz/~izemek/grants.php.cs?le=%2Fproj%2F589%2FPresentations
%2FPB05-Converting-FAs-To-REs.pdf&id=589

[TPoRE] Nikita Popov The true power of regular expressions https://nikic.github.io/2012/06/15/The-true-power-of-
regular-expressions.html

[REBNF] Michael Wollowski Regular ExpressionsBackus-Naur Form (BNF) https://www.rose-hulman.edu/class/se/
csse404/schedule/day2/02-REBNF.pdf

[NFA2RE] Convert NFA to regular expression https://girdhargopalbansal.blogspot.com/2013/06/convert-nfa-to-
regular-expression.html

[DFA2RE] DFA to Regular Expression | Examples Akshay Singhal https://www.gatevidyalay.com/dfa-to-regular-
expression-examples-automata/

[REGGE] Regular expression generation through grammatical evolution Ahmet Cetinkaya https://dl.acm.org/
citation.cfm?id=1274089

[CSS3] Selectors Level 3 W3C Recommendation 29 September 2011 W3C http://www.w3.org/TR/2011/REC-css3-
selectors-20110929/

[CSS3new] Selectors Level 3 W3C Recommendation 06 November 2018 W3C https://www.w3.org/TR/2018/REC-
selectors-3-20181106/

[sel4] Selectors Level 4 W3C Working Draf, 21 November 2018 W3C https://www.w3.org/TR/2018/WD-
selectors-4-20181121/

[BCP47] Tags for Identifying Languages IETF https://tools.ietf.org/html/bcp47

16That is, a teidata.xTruthValue.

195

https://github.com/NEU-DSG/wwp-public-code-share/
https://github.com/NEU-DSG/wwp-public-code-share/
https://github.com/NEU-DSG/wwp-public-code-share/
https://tei-c.org/guidelines/p5/
https://tei-c.org/guidelines/p5/
https://tei-c.org/Vault/P5/current/doc/tei-p5-doc/readme-2.9.1.html
https://tei-c.org/Vault/P5/current/doc/tei-p5-doc/readme-2.9.1.html
https://tei-c.org/Vault/P5/current/doc/tei-p5-doc/readme-2.9.1.html
http://www.fit.vutbr.cz/~izemek/grants.php.cs?file=%2Fproj%2F589%2FPresentations%2FPB05-Converting-FAs-To-REs.pdf&id=589
http://www.fit.vutbr.cz/~izemek/grants.php.cs?file=%2Fproj%2F589%2FPresentations%2FPB05-Converting-FAs-To-REs.pdf&id=589
https://nikic.github.io/2012/06/15/The-true-power-of-regular-expressions.html
https://nikic.github.io/2012/06/15/The-true-power-of-regular-expressions.html
https://www.rose-hulman.edu/class/se/csse404/schedule/day2/02-REBNF.pdf
https://www.rose-hulman.edu/class/se/csse404/schedule/day2/02-REBNF.pdf
https://girdhargopalbansal.blogspot.com/2013/06/convert-nfa-to-regular-expression.html
https://girdhargopalbansal.blogspot.com/2013/06/convert-nfa-to-regular-expression.html
https://www.gatevidyalay.com/dfa-to-regular-expression-examples-automata/
https://www.gatevidyalay.com/dfa-to-regular-expression-examples-automata/
https://dl.acm.org/citation.cfm?id=1274089
https://dl.acm.org/citation.cfm?id=1274089
http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2018/REC-selectors-3-20181106/
https://www.w3.org/TR/2018/REC-selectors-3-20181106/
https://www.w3.org/TR/2018/WD-selectors-4-20181121/
https://www.w3.org/TR/2018/WD-selectors-4-20181121/
https://tools.ietf.org/html/bcp47

XSpec in the Cloud with Diamonds
Sandro Cirulli, XSpec

Abstract

Running XSpec tests in a development team is usually performed via a CI server/service. However,
this comes with limitations related to the use of private repositories and to the cost and burden of
administering CI servers.

This paper describes an alternative approach for running XSpec tests from private repositories using a
serverless architecture built on AWS Lambda. It describes the technical conguration and discusses the
benets, cost optimization, and constraints of a serverless architecture for running XSpec tests.

197

Introduction

1. Introduction
XSpec is a unit test and behaviour-driven development framework for XSLT, XQuery, and Schematron [xspec] [203].
XSpec test suites are generally executed:

• On a local machine using the shell or batch scripts, the oXygen XML editor, etc.

• On a Continuous Integration (CI) server using sofware tools like Jenkins or online CI services like Travis, CircleCI,
AppVeyor, etc.

While running tests locally is typically performed by individual developers during their development process, running
tests on a CI server is usually employed within a team to integrate code changes under version control.

CI servers like Jenkins ofer ne grained control on how the test suite is executed and support both private and public
version controlled repositories. However, this conguration requires a server to run the CI sofware and a system
administrator to maintain both the server and the sofware.

Conversely, online CI services like Travis run entirely on the cloud and do not require system administration or server
maintenance. On the other hand, these CI services are free to use only for open source projects in public repositories and
charge fees for private repositories and improved capabilities.

The aim of this paper is to show an alternative approach using a serverless architecture built on AWS Lambda. This allows
to run XSpec tests from private repositories while keeping costs low and avoiding server and sofware maintenance.

2. AWS Lambda and Serverless Architecture
Lambda is a compute service provided by Amazon Web Services (AWS) allowing to run code without provisioning or
managing servers [lambda] [203]. AWS Lambda claims to scale applications and workloads automatically from few
requests per day to thousands per second and charges only for the compute time used.

AWS Lambda can be used in conjunction with other services to build a serverless architecture. This is a cloud architecture
typically running a function inside a stateless computing environment triggered by an event [fowler] [202]. Serverless
architectures enable to run applications and workloads without managing server infrastructure and with reduced
operational costs and exible scaling [cncf] [202].

In the next section I am going to explain how to build a serverless architecture for running XSpec test suites triggered by
an event such as pushing new code to a version control system.

3. Technical Conguration
Figure 1 [198] illustrates the workow for running XSpec tests in a serverless architecture.

Figure 1. Workow for running XSpec tests in a serverless architecture

AWS Cloud

Git users Git private repository Amazon API Gateway AWS Lambda

AWS Lambda

Amazon S3 SSH key bucket

Amazon S3 git bucket

Amazon S3 report bucket

AWS KMS key

SNS notification

git push git webhook

run XSpec tests

198

Linking Git to S3

The workow comprises the following steps:

1. A developer pushes a code change into a private git repository.

2. A git webhook sends a payload to an Amazon API gateway.

3. The API gateway endpoint accepts the webhook request from git and triggers a Lambda function.

4. The Lambda function connects over SSH to the git service. SSH private keys are stored securely using Amazon S3
and AWS KMS.

5. The zipped content of the git repository is stored in S3.

6. The S3 storage event triggers a lambda function that unzips the content of the git repository and executes XSpec tests.

7. The report of the XSpec tests is stored in S3. A notication is sent via email through SNS to the development team.

For the readers unfamiliar with AWS, I shortly describe the purpose of each Amazon service mentioned in the diagram
and in the next sections:

• Amazon API Gateway: a managed service allowing to create API endpoints [api_gateway] [202].

• Amazon S3: an object storage service (S3 stands for Simple Storage Service) [s3] [203].

• Amazon KMS: a managed service for creating, storing and accessing encryption keys (KMS stands for Key
Management Service) [kms] [203].

• AWS Lambda: a service for building serverless applications and running code without managing servers
[lambda] [203].

• Amazon SNS: a messaging service for sending notications such as emails, sms, etc. to subscribing clients (SNS stands
for Simple Notication Service) [sns] [203].

• AWS CloudFormation: a service for describing and provisioning infrastructure resources in AWS
[cloudformation] [202].

• AWS IAM: a service for controlling access to AWS resources (IAM stands for Identity and Access Management)
[iam] [203].

• Amazon CloudWatch: a service for monitoring AWS resources [cloudwatch] [202].

• AWS Billing and Cost Management: a service for paying, monitoring, and budgeting costs in AWS [billing] [202].

In the next sections I am going to describe how to set up and congure the serveless architecture. First, I am going to
link the private git repository with S3 in order to store changes whenever a user pushes new commits to git (steps 1 to
5). Then I'm goint to congure the lambda function to run XSpec tests and send notications to the user (steps 6 and
7). Whenever possible, I will refer to code in my GitHub account so that readers wishing to replicate this can get hold
of code examples and templates.

3.1. Linking Git to S3

The easiest way to link git repositories to S3 and build the rst part of the infrastructure in the diagram is to use the
Quick Start deployment guide provided by AWS [git2s3] [203]. This contains a quick start button allowing to start
all the necessary AWS resources with a single click using an AWS CloudFormation template. The process is thoroughly
documented in the guide which also describes several options for customizing the conguration.

In my GitHub repository [markupuk2019] [203] I wrote additional documentation for my conguration. In
particular, I set up a GitHub private repository and used a GitHub webhook to send a payload to the AWS API Gateway
whenever a new commit is pushed to the GitHub repository (this option is referred to as git pull endpoint in the Quick
Start guide). Figure 2 [200], taken from the ocial Quick Start documentation, illustrates the webhook workow.

199

Lambda Conguration

Figure 2. Workow for triggering the webhook

This conguration covers points 1 to 5 of the diagram. At the end of the process the GitHub private repository is replicated
in a zip le within S3.

3.2. Lambda Conguration

This conguration covers point 6 and 7 of the diagram. In particular, it describes the conguration for setting up the
lambda function running XSpec tests. This entails:

1. Retrieving the GitHub code stored in a zip le in S3.

2. Unzipping the le and storing it in a local directory accessible by the lambda function.

3. Setting up environment variables required by XSpec (i.e. paths to Saxon and HTML report).

4. Running the XSpec test suite for all the XSpec tests stored in a given directory.

5. Storing the HTML report in S3.

6. Notifying the developer in case a test failed and providing a link for accessing the HTML report in S3.

A step-by-step guide to replicate this conguration and the code for the lambda function is available in my GitHub
account [markupuk2019] [203]. It is worth highlighting the following points:

• Custom Runtime: AWS Lambda natively supports lambda functions written in Java, Go, PowerShell, Node.js, C#,
Python, and Ruby. AWS Lambda also provides a Runtime API allowing to implement the lambda function in any
programming language [custom_runtime] [202]. I used the latter approach and implemented the lambda function
in bash as calling the xspec.sh shell script is the simplest way to run the XSpec test suite. However, the lambda
function could be re-written using virtually any programming language.

• Layers: the lambda function makes use of layers [layers] [203]. A layer is a zip le containing additional libraries and
dependencies. In particular, I used layers for the XSpec runtime, the Saxon HE jar le, and bash [bash_layer] [202].
It is also possible to add a layer for Apache Ant and run the XSpec test suite via Ant which can speed up the test suite
execution.

• Memory and Time Settings: these are congured in the settings for the lambda function. As running large XSpec test
suites can be memory and time intensive, I recommend to adapt the values of memory and timeout accordingly. In my
experience 512 MB memory and 2 minute timeout is a minimum threshold for running few XSpec tests.

• IAM conguration: the lambda function is granted permissions to interact with other AWS services like S3 and SNS
via a IAM role [iam_role] [203]. It is a good security practice to allow access only to the relevant S3 buckets.

• Notication: I congured the lambda function to send email notications via SNS (Figure 3 [201] shows an
example of email notication with a failed test). It is also possible to congure SNS to send notications to a chat
messaging service like Slack and this may be more appropriate for large development teams.

200

Analysis and Discussion

Figure 3. Email notication

• CI Workow: the lambda function is congured to stop as soon as a test fails: this is done in order to reduce the
execution time and to lower costs. However, it is possible to adapt the lambda function to run the full test suite and
report all the failing tests in the notication.

• Troubleshooting: debugging a lambda function can be challenging as the environment upon which it runs is stateless.
Using CloudWatch to monitor the execution of the function and outputting the results of commands to the
CloudWatch logs is extremely useful for troubleshooting.

4. Analysis and Discussion
In this section I analyze and discuss the major benets, constraints and limitations of the serverless architecture for
running the XSpec test suites.

4.1. Benets of Serverless Architecture
Not having to provision and maintain servers and the sofware running on it is by far the greatest advantage of running
a serverless architecture. Not only this can help reducing operational costs but it also frees up sofware engineering time
that could be spent in more valuable tasks.

Another advantage is the scalability of a serverless environment once it is well architected in independent components. In
fact, a serverless architecture is stateless and event-driven and can be easily scaled up and down by adjusting the resources
and parameters of the single components. For example, memory allocation is a parameter in the lambda function; running
out of storage space is not an issue since S3 provides virtually innite storage space.

Finally, the serverless architecture is highly available since it relies on AWS managed services like API Gateway, Lambda,
and S3: the architecture will go down only if and when AWS experiences an outage.

4.2. Memory and Time Execution Constraints
As described in the lambda conguration section, running XSpec test suites can be a memory and time intensive process
and parameters for memory allocation and timeout need to be adjusted according to the number and type of XSpec tests.

AWS Lambda enables to run a function for up to 15 minutes, afer which the function will automatically timeout.
Therefore the XSpec test suite needs to run within this time constraint. This limitation is useful as it helps keeping the

201

Cost Optimization

test suite manageable and its execution fast enough to provide feedback to developers within a short time frame. As the
test suite becomes more complex and more tests are added, it is recommended to break it down into diferent groups and
assign a lambda function for each group of XSpec tests. This ofers the advantage of running multiple lambda functions
in parallel and keeps the total execution within the 15 minute time constraint.

4.3. Cost Optimization

Reducing operational costs is one of the major advantages of a serverless solution. However, costs in a cloud computing
environment need to be closely monitored in order to avoid surprises.

AWS provides a billing console for monitoring and estimating costs. It also provides billing alarms when AWS costs go
over a certain threshold. These are very useful tools for keeping the cost within the allocated budget.

Costs for AWS Lambda are based on usage and charged according to the number of requests and the duration
[lambda_pricing] [203]. At the time of writing AWS provides a generous free tier of 1 million free requests and
400,000 GB-seconds of compute time per month. This makes a test suite based on a serverless architecture particularly
attractive as it can be used with very little operational costs. However, increasing the memory and the timeout settings of
the lambda function also increases the costs so these need to be factored in.

4.4. Vendor Lock-in

Amazon introduced AWS Lambda in 2014 and was the rst cloud provider to ofer and popularize this type of service
in its cloud computing platform. However, nowadays other major cloud providers ofer similar options for building
serverless architecture: for example Microsof with Azure Functions and Google with Google Cloud Functions. However,
building serverless applications with a cloud provider inevitably comes with a degree of vendor lock-in as serverless services
like AWS Lambda are proprietary and cannot be easily ported to another cloud provider. Therefore building serverless
architecture may increase the depedency towards a single cloud provider.

5. Conclusion
In this paper I described an alternative approach for running XSpec test suites using a serverless architecture built on AWS.
The high level conguration is explained in this paper and more details with step-by-step instructions and code examples
are available on my GitHub account. I also analyzed and discussed benets and constraints of a serverless solution.

I hope this can be helpful for development teams wishing to implement a CI workow while reducing operational burden
and costs. I would be interested in knowing and possibly helping anyone willing to implement this serverless workow
for running XSpec tests.

Bibliography
[api_gateway] Amazon Web Services, Inc.. Amazon API Gateway. https://aws.amazon.com/api-gateway . Accessed:

26 May 2019.

[bash_layer] GitHub. Bash Lambda Layer. https://github.com/gkrizek/bash-lambda-layer . Accessed: 26 May 2019.

[billing] Amazon Web Services, Inc.. What Is AWS Billing and Cost Management?. https://docs.aws.amazon.com/
awsaccountbilling/latest/aboutv2/billing-what-is.html . Accessed: 26 May 2019.

[cloudformation] Amazon Web Services, Inc.. AWS CloudFormation. https://aws.amazon.com/cloudformation .
Accessed: 26 May 2019.

[cloudwatch] Amazon Web Services, Inc.. Amazon CloudWatch. https://aws.amazon.com/cloudwatch . Accessed: 26
May 2019.

[cncf] Cloud Native Computing Foundation. CNCF WG-Serverless Whitepaper v1.0. https://github.com/cncf/wg-
serverless/raw/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf . Accessed: 26
May 2019.

[custom_runtime] Amazon Web Services, Inc.. Custom AWS Lambda Runtimes. https://docs.aws.amazon.com/
lambda/latest/dg/runtimes-custom.html . Accessed: 26 May 2019.

[fowler] Martin Fowler. Serverless Architectures. https://martinfowler.com/articles/serverless.html . Accessed: 26 May
2019.

202

https://aws.amazon.com/api-gateway
https://github.com/gkrizek/bash-lambda-layer
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://aws.amazon.com/cloudformation
https://aws.amazon.com/cloudwatch
https://github.com/cncf/wg-serverless/raw/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/raw/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://martinfowler.com/articles/serverless.html

Conclusion

[git2s3] Amazon Web Services, Inc.. Git Webhooks with AWS Services. https://aws-quickstart.s3.amazonaws.com/
quickstart-git2s3/doc/git-to-amazon-s3-using-webhooks.pdf . Accessed: 26 May 2019.

[iam] Amazon Web Services, Inc.. AWS Identity and Access Management. https://aws.amazon.com/iam . Accessed:
26 May 2019.

[iam_role] Amazon Web Services, Inc.. IAM Roles. https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles.html . Accessed: 26 May 2019.

[kms] Amazon Web Services, Inc.. AWS Key Management Service (KMS). https://aws.amazon.com/kms . Accessed:
26 May 2019.

[lambda] Amazon Web Services, Inc.. What is AWS Lambda?. https://docs.aws.amazon.com/lambda/latest/dg/
welcome.html . Accessed: 26 May 2019.

[lambda_pricing] Amazon Web Services, Inc.. AWS Lambda pricing. https://aws.amazon.com/lambda/pricing .
Accessed: 26 May 2019.

[layers] Amazon Web Services, Inc.. AWS Lambda Layers. https://docs.aws.amazon.com/lambda/latest/dg/
conguration-layers.html . Accessed: 26 May 2019.

[markupuk2019] GitHub. Markup UK 2019. https://github.com/cirulls/markupuk2019 . Accessed: 26 May 2019.

[s3] Amazon Web Services, Inc.. Amazon S3. https://aws.amazon.com/s3 . Accessed: 26 May 2019.

[sns] Amazon Web Services, Inc.. Amazon Simple Notification Service. https://aws.amazon.com/sns . Accessed: 26
May 2019.

[xspec] GitHub. XSpec. https://github.com/xspec/xspec . Accessed: 26 May 2019.

203

https://aws-quickstart.s3.amazonaws.com/quickstart-git2s3/doc/git-to-amazon-s3-using-webhooks.pdf
https://aws-quickstart.s3.amazonaws.com/quickstart-git2s3/doc/git-to-amazon-s3-using-webhooks.pdf
https://aws.amazon.com/iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://aws.amazon.com/kms
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/lambda/pricing
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://github.com/cirulls/markupuk2019
https://aws.amazon.com/s3
https://aws.amazon.com/sns
https://github.com/xspec/xspec

	Markup UK 2019 Proceedings
	Table of Contents
	Beyond the brick, for the past in the future, you find the archive!
	1. Archives
	2. Building Blocks
	3. eArchiving Building Block
	4. Long-term preservation of information
	5. Use cases
	6. Skill set
	7. Standards, de facto standards and specifications
	8. eArchiving Building block Specifications
	9. The eArchiving reference model setting
	10. Content specifications
	11. Basic soup recipe with a twist
	12. Conclusion: Moving on from soup
	Bibliography

	Software we have lost
	1. Background
	2. Software
	2.1. Parsers and validators
	2.1.1. ARC SGML ◯
	2.1.2. ASP SGML ✗
	2.1.3. sgmls ☑

	2.2. Editors
	2.2.1. ADEPT ✗
	2.2.2. Author/Editor ☑
	2.2.3. Emacs + psgml ☑
	2.2.4. epcedit ☑
	2.2.5. InContext ☑
	2.2.6. MultiDoc Pro Translating Editor ☑
	2.2.7. Near&Far Author for Word ✗
	2.2.8. GriF SGML Editor ✗
	2.2.9. WordPerfect+SGML ☑

	2.3. Processors
	2.3.1. Balise ✗
	2.3.2. DAPHNE □
	2.3.3. DynaText ☑
	2.3.4. Omnimark ☑
	2.3.5. Microsoft SGML Author for Word ✗

	2.4. Formatters, including browsers and servers
	2.4.1. Panorama Publisher and Viewer ☑
	2.4.2. FrameMaker+SGML ✗
	2.4.3. MultiDoc Pro Publisher ☑

	2.5. Other software
	2.5.1. Near&Far Designer ☑
	2.5.2. PAT □
	2.5.3. SGML Darc ☑

	3. Conclusions
	3.1. Some stuff has been gained.
	3.2. Some stuff has been lost.

	A. Sample SGML document
	1. The DTD used in the sample document
	2. The SGML Declaration used for the sample document

	B. Software and documentation available
	Bibliography

	xprocedit, A Browser-Based Open-Source XProc Editor
	1. Introduction
	2. Why is XProc Special?
	3. Selecting a Graph Editing Framework
	4. Solution
	5. Other Visual XProc Editors
	6. Outlook
	7. Conclusion
	Bibliography

	Generating documents from XQuery annotations
	1. Introduction
	2. Annotations?
	2.1. What are annotations?
	2.2. Use of annotations in XQuery
	2.2.1. Built-in annotations
	2.2.2. RestXQ
	2.2.3. Unit testing
	2.2.4. Other applications

	3. XQuery documentation
	3.1. The xqDoc format
	3.2. Schema updates
	3.3. Working with xqDoc documents
	3.4. Components
	3.5. XqDoc implementations
	3.6. Parsers

	4. Introducing xqDocA
	4.1. Overview
	4.1.1. Renderers

	4.2. Implementation
	4.3. Sample outputs
	4.4. Customisation

	5. Conclusions
	Bibliography

	XQuery for Data Workers
	1. Introduction
	2. Requirements
	3. Chosen environment
	3.1. NodeJS
	3.2. Browsers
	3.3. XQuery

	4. Fleur: an XQuery implementation in Javascript
	5. Development and tests
	6. Extensions
	6.1. The generalized doc() and serialize() functions
	6.2. Two-dimensional sequences for tabular data
	6.3. Function Modules
	6.4. Server-side evaluation
	6.5. Client-side evaluation

	7. Examples of Data Workers with Fleur
	7.1. Bank statements converted into CSV files
	7.2. IT Inventory dashboards
	7.3. XLSForm to XSLTForms
	7.4. Collecting from network equipments
	7.5. XForms 2.0 Test Suite for XSLTForms
	7.6. Updating users accounts from HR software

	8. Conclusion
	Bibliography

	subcheck Article MarkupUK London
	1. Intro
	2. TTML and its Profiles
	3. Validation of TTML Profiles
	4. Validation Requirements
	5. Implementation Approach
	5.1. Master Thesis
	5.2. Application Implementation
	5.2.1. Rules Documentation
	5.2.2. Schematron Schema File
	5.2.3. Compiled Schematron
	5.2.4. Generation of the Report
	5.2.5. Overview: The Transformation Chain

	6. Interfaces: Machine-to-Machine and the End-User
	6.1. Using the subcheck Application
	6.1.1. The Report View
	6.1.2. Adaptive Filtering

	7. Conclusion
	8. Other Aspects and Perspective
	Bibliography
	A. Appendix A - Subcheck artifacts with TTML examples

	An Improved diff3 Format for Changes and Conflicts in Tree Structures
	1. Introduction and Background
	2. How diff3 Delimits the Extent of Changes and Conflicts
	3. Preserving Well-Formed Tree Structure in diff3
	3.1. Representing XML Element Tag Change in diff3
	3.2. Representing XML Attribute Change in diff3
	3.3. Representing JSON Structure Change in diff3
	3.4. Representing JSON Separator Change in diff3

	4. diff3 Format as XML or JSON
	5. Nested Changes
	6. Conclusions
	References

	<Angle-brackets/> on the Branch Line
	1. Introduction
	2. Overall Design
	3. Layout Topology and Geometry
	3.1. Representing the topology
	3.2. Computing the geometry

	4. Drawing pictures
	4.1. Isometric Views

	5. Interaction
	6. Animations
	7. Developments
	7.1. True 3D models and view rotation
	7.2. Collision detection, a.k.a. train crashes
	7.3. Difficulties

	8. Conclusion
	References

	Taking Schematron QuickFix To The Next Level
	1. Introduction
	2. Schematron QuickFix Language
	3. Use Cases
	3.1. Type of Users
	3.2. Generate Content Using XPath
	3.3. Change Text Using Regular Expressions
	3.4. Using XSLT to Generate Content
	3.5. Ignore Schematron Checks
	3.6. SQF User Input Dialog

	4. Abstract Quick Fixes
	5. Multilingual Support in SQF
	6. Generate Quick Fixes Dynamically
	7. Conclusion
	Bibliography

	Accessibility Matters
	1. What is accessibility?
	2. Standards for accessibility
	3. Accessibility in, accessibility out
	4. HTML
	5. Tagged PDF
	5.1. Specialised PDF tags
	5.1.1. AH Formatter
	5.1.2. FOP
	5.1.3. XEP

	6. PDF/UA
	6.1. Matterhorn Protocol
	6.2. PAC 3 PDF/UA checker

	7. Common Structures
	7.1. Language indication
	7.1.1. HTTML

	7.2. Part, Article, Section, or Division
	7.3. Headings
	7.4. Table of Contents
	7.4.1. HTML
	7.4.2. Tagged PDF

	7.5. Index
	7.6. Footnote
	7.6.1. HTML
	7.6.2. Tagged PDF

	7.7. Endnote
	7.7.1. HTML
	7.7.2. Tagged PDF

	7.8. Tables
	7.8.1. HTML
	7.8.2. Tagged PDF and PDF/UA

	7.9. Icons, etc.
	7.9.1. Tagged PDF and PDF/UA

	7.10. Mathematics
	7.10.1. HTML
	7.10.2. Tagged PDF

	7.11. Citation
	7.11.1. HTML
	7.11.2. Tagged PDF

	7.12. Block quotation
	7.12.1. HTML
	7.12.2. Tagged PDF

	7.13. Inline quotation
	7.14. Inline code
	7.15. Bibliography

	8. Conclusion
	Bibliography

	Scrap the App, Keep the Data
	1. Business issue
	1.1. Data archiving and application decommissioning
	1.2. Freeing up licenses
	1.3. Merging data silos

	2. Technical angle
	2.1. Relational data
	2.2. Hierarchical data

	3. Different paths to consider
	3.1. Use a proprietary connector
	3.2. Use the app's export/import functionality
	3.3. Export the data from the app's relational database and aggregate it into hierarchical XML records
	3.4. Export the data from the app's relational database, serialize and store it as relational XML records
	3.5. Data virtualization

	4. Implementation
	4.1. Execution framework
	4.2. Execution steps
	4.2.1. Export
	4.2.2. Transformation
	4.2.2.1. XML serialization
	4.2.2.2. Data types
	4.2.2.3. Row customizer
	4.2.2.4. Format conversion

	4.2.3. Aggregation

	5. Conclusion

	Documenting XML Structures
	1. Introduction
	1.1. About the author and his documenting experience

	2. Consumption: Understanding XML structures
	3. Production: Creating XML Structure documentation
	3.1. Schemas and documentation
	3.2. Writing documentation
	3.3. The target format and how to produce it
	3.4. XML element documentation
	3.5. An example tool-chain

	4. Conclusions and wrap-up

	XMLPaper: XML-based Conference Paper Workflow
	1. Introduction
	2. Conference paper submission workflow
	2.1. Content creation
	2.2. Peer review
	2.3. Publishing

	3. XMLPaper architecture
	3.1. The source format
	3.2. Self-service project template
	3.3. Steady-state workflow
	3.4. Initial setup

	4. User experience analysis
	5. Similarities with other content creation workflows
	6. Conclusion
	Bibliography

	Dispelling Myths About Markup Formats: When What Why Where
	1. Introduction
	1.1. HTML: The HyperText Markup Language (HTML).

	2. Markdown
	3. RDF and Linked Data
	4. JavaScript Object Notation (JSON)
	5. JSON-LD: JSON meets RDF
	6. Portable Document Format (PDF)
	7. Domain-specific XML Vocabularies
	8. XHTML™: The Extensible HyperText Markup Language
	9. DocBook
	10. Customizing DocBook: Mallard
	11. The Text Encoding Initiative (TEI)
	12. Open Document Format (ODF), OOXML
	13. Raster Images
	14. Conclusion
	Bibliography

	Validating selector
	1. Introduction
	2. Against all odds
	3. Writing the Regexp
	3.1. Generating the generator
	3.2. Case
	3.3. Language
	3.4. What the generator generated
	3.4.1. RELAX NG schema
	3.4.2. XSLT “schema”

	3.5. Rapid cyclic debugging
	3.5.1. Practical
	3.5.2. Logical

	4. Resources
	4.1. Time
	4.2. Memory
	4.3. Storage

	5. Future work
	6. Availability
	Bibliography

	XSpec in the Cloud with Diamonds
	1. Introduction
	2. AWS Lambda and Serverless Architecture
	3. Technical Configuration
	3.1. Linking Git to S3
	3.2. Lambda Configuration

	4. Analysis and Discussion
	4.1. Benefits of Serverless Architecture
	4.2. Memory and Time Execution Constraints
	4.3. Cost Optimization
	4.4. Vendor Lock-in

	5. Conclusion
	Bibliography

